When.com Web Search

  1. Ads

    related to: list of dispersion matrices in excel practice for beginners video 1 5

Search results

  1. Results From The WOW.Com Content Network
  2. Covariance matrix - Wikipedia

    en.wikipedia.org/wiki/Covariance_matrix

    Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...

  3. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A matrix with all entries either 0 or 1. Synonym for (0,1)-matrix, binary matrix or Boolean matrix. Can be used to represent a k-adic relation. Markov matrix: A matrix of non-negative real numbers, such that the entries in each row sum to 1. Metzler matrix: A matrix whose off-diagonal entries are non-negative. Monomial matrix

  4. Fisher information - Wikipedia

    en.wikipedia.org/wiki/Fisher_information

    The Fisher information matrix is used to calculate the covariance matrices associated with maximum-likelihood estimates. It can also be used in the formulation of test statistics, such as the Wald test. In Bayesian statistics, the Fisher information plays a role in the derivation of non-informative prior distributions according to Jeffreys ...

  5. Exponential dispersion model - Wikipedia

    en.wikipedia.org/wiki/Exponential_dispersion_model

    [1] [2] [3] Exponential dispersion models play an important role in statistical theory, in particular in generalized linear models because they have a special structure which enables deductions to be made about appropriate statistical inference.

  6. Conjugate prior - Wikipedia

    en.wikipedia.org/wiki/Conjugate_prior

    In Bayesian probability theory, if, given a likelihood function (), the posterior distribution is in the same probability distribution family as the prior probability distribution (), the prior and posterior are then called conjugate distributions with respect to that likelihood function and the prior is called a conjugate prior for the likelihood function ().

  7. Central tendency - Wikipedia

    en.wikipedia.org/wiki/Central_tendency

    In equations, for a given (finite) data set X, thought of as a vector x = (x 1,…,x n), the dispersion about a point c is the "distance" from x to the constant vector c = (c,…,c) in the p-norm (normalized by the number of points n):

  8. Precision (statistics) - Wikipedia

    en.wikipedia.org/wiki/Precision_(statistics)

    In statistics, the precision matrix or concentration matrix is the matrix inverse of the covariance matrix or dispersion matrix, =. [ 1 ] [ 2 ] [ 3 ] For univariate distributions , the precision matrix degenerates into a scalar precision , defined as the reciprocal of the variance , p = 1 σ 2 {\displaystyle p={\frac {1}{\sigma ^{2}}}} .

  9. Spatial descriptive statistics - Wikipedia

    en.wikipedia.org/wiki/Spatial_descriptive_statistics

    Dispersion captures the degree to which points in a point set are separated from each other. For most applications, spatial dispersion should be quantified in a way that is invariant to rotations and reflections. Several simple measures of spatial dispersion for a point set can be defined using the covariance matrix of