Search results
Results From The WOW.Com Content Network
A two-vector or bivector [1] is a tensor of type () and it is the dual of a two-form, meaning that it is a linear functional which maps two-forms to the real numbers (or more generally, to scalars). The tensor product of a pair of vectors is a two-vector.
The set of complex numbers C, numbers that can be written in the form x + iy for real numbers x and y where i is the imaginary unit, form a vector space over the reals with the usual addition and multiplication: (x + iy) + (a + ib) = (x + a) + i(y + b) and c ⋅ (x + iy) = (c ⋅ x) + i(c ⋅ y) for real numbers x, y, a, b and c. The various ...
column vector A matrix with only one column. [3] coordinate vector The tuple of the coordinates of a vector on a basis. covector An element of the dual space of a vector space, (that is a linear form), identified to an element of the vector space through an inner product.
The simplest example of a vector space is the trivial one: {0}, which contains only the zero vector (see the third axiom in the Vector space article). Both vector addition and scalar multiplication are trivial. A basis for this vector space is the empty set, so that {0} is the 0-dimensional vector space over F.
A dyad is a tensor of order two and rank one, and is the dyadic product of two vectors (complex vectors in general), whereas a dyadic is a general tensor of order two (which may be full rank or not). There are several equivalent terms and notations for this product:
Sometimes the term linear operator refers to this case, [1] but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that and are real vector spaces (not necessarily with =), [citation needed] or it can be used to emphasize that is a function space, which is a common ...
If V is a vector space over a field k, the set of all linear functionals from V to k is itself a vector space over k with addition and scalar multiplication defined pointwise. This space is called the dual space of V, or sometimes the algebraic dual space, when a topological dual space is also considered.
In mathematics, a bilinear form is a bilinear map V × V → K on a vector space V (the elements of which are called vectors) over a field K (the elements of which are called scalars). In other words, a bilinear form is a function B : V × V → K that is linear in each argument separately: B(u + v, w) = B(u, w) + B(v, w) and B(λu, v) = λB(u, v)