Search results
Results From The WOW.Com Content Network
Atoms can be excited by heat, electricity, or light. The hydrogen atom provides a simple example of this concept.. The ground state of the hydrogen atom has the atom's single electron in the lowest possible orbital (that is, the spherically symmetric "1s" wave function, which, so far, has been demonstrated to have the lowest possible quantum numbers).
The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. In quantum field theory, the ground state is usually called the vacuum state or the vacuum.
Excited states in nuclear, atomic, and molecule systems have distinct energy values, allowing external energy to be absorbed in the appropriate proportions. [ 6 ] In general, the excitation of electrons in atoms strongly varies from excitation in solids, due to the different nature of the electronic levels and the structural properties of some ...
For example, the table shows that the first pair of vertically adjacent atoms with different ground-state term symbols are V and Nb. The 6 D 1 ⁄ 2 ground state of Nb corresponds to an excited state of V 2112 cm −1 above the 4 F 3 ⁄ 2 ground state of V, which in turn corresponds to an excited state of Nb 1143 cm −1 above the Nb ground ...
The excited states decay after very short times (2.5 and 23 ps, resp.; 1 picosecond is a millionth of a millionth of a second) to the ground state. Decay scheme of 99m Tc While excited nuclear states are usually very short lived, decaying almost immediately after a beta decay (see above), the excited state of the technetium isotope shown here ...
A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy excited state levels (higher energy levels). ). "Metastable" describes nuclei whose excited states have half-lives 100 to 1000 times longer than the half-lives of the excited nuclear states that decay with a "prompt" half life (ordinarily on the order of 10
Spontaneous emission is the process in which a quantum mechanical system (such as a molecule, an atom or a subatomic particle) transits from an excited energy state to a lower energy state (e.g., its ground state) and emits a quantized amount of energy in the form of a photon. Spontaneous emission is ultimately responsible for most of the light ...
Helimagnetism: A state with spatially rotating magnetic order. Spin glass: A magnetic state characterized by randomness. Quantum spin liquid: A disordered state in a system of interacting quantum spins which preserves its disorder to very low temperatures, unlike other disordered states.