Search results
Results From The WOW.Com Content Network
The abbreviation is not always a short form of the word used in the clue. For example: "Knight" for N (the symbol used in chess notation) Taking this one stage further, the clue word can hint at the word or words to be abbreviated rather than giving the word itself. For example: "About" for C or CA (for "circa"), or RE.
Is a subfield of calculus [30] concerned with the study of the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus, the study of the area beneath a curve. [31] differential equation Is a mathematical equation that relates some function with its derivatives. In applications ...
2. Denotes the range of values that a measured quantity may have; for example, 10 ± 2 denotes an unknown value that lies between 8 and 12. ∓ (minus-plus sign) Used paired with ±, denotes the opposite sign; that is, + if ± is –, and – if ± is +. ÷ (division sign)
Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus.
Abbreviations, the use of a foreign language, variant spellings, or other unusual word tricks are indicated in the clue. A crossword creator might choose to clue the answer SEN (as in the abbreviation for "senator") as "Washington bigwig: Abbr." or "Member of Cong.", with the abbreviation in the clue indicating that the answer is to be ...
Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. This page lists some of the most common antiderivatives.
Also called infinitesimal calculus A foundation of calculus, first developed in the 17th century, that makes use of infinitesimal numbers. Calculus of moving surfaces an extension of the theory of tensor calculus to include deforming manifolds. Calculus of variations the field dedicated to maximizing or minimizing functionals. It used to be called functional calculus. Catastrophe theory a ...
The language of mathematics has a wide vocabulary of specialist and technical terms. It also has a certain amount of jargon: commonly used phrases which are part of the culture of mathematics, rather than of the subject.