When.com Web Search

  1. Ad

    related to: arithmetic progressions problems and answers quizlet physics exam 2

Search results

  1. Results From The WOW.Com Content Network
  2. Problems involving arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Problems_involving...

    For a given set S of integers find the minimal number of nonoverlapping arithmetic progressions that cover S; Find the number of ways to partition {1, ..., n} into arithmetic progressions. [8] Find the number of ways to partition {1, ..., n} into arithmetic progressions of length at least 2 with the same period. [9] See also Covering system

  3. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    Proof without words of the arithmetic progression formulas using a rotated copy of the blocks. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...

  4. Primes in arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Primes_in_arithmetic...

    In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes (3, 7, 11), which is given by a n = 3 + 4 n {\displaystyle a_{n}=3+4n} for 0 ≤ n ≤ 2 {\displaystyle 0\leq n\leq 2} .

  5. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    For example, 6n + 1 produces the same primes as 3n + 1, while 6n + 5 produces the same as 3n + 2 except for the only even prime 2. The following table lists several arithmetic progressions with infinitely many primes and the first few ones in each of them.

  6. Green–Tao theorem - Wikipedia

    en.wikipedia.org/wiki/Green–Tao_theorem

    There has been separate computational work to find large arithmetic progressions in the primes. The Green–Tao paper states 'At the time of writing the longest known arithmetic progression of primes is of length 23, and was found in 2004 by Markus Frind, Paul Underwood, and Paul Jobling: 56211383760397 + 44546738095860 · k ; k = 0, 1 ...

  7. Harmonic progression (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_progression...

    If collinear points A, B, C, and D are such that D is the harmonic conjugate of C with respect to A and B, then the distances from any one of these points to the three remaining points form harmonic progression. [2] [3] Specifically, each of the sequences AC, AB, AD; BC, BA, BD; CA, CD, CB; and DA, DC, DB are harmonic progressions, where each ...

  8. Szemerédi's theorem - Wikipedia

    en.wikipedia.org/wiki/Szemerédi's_theorem

    The problem of obtaining bounds in the k=3 case of Szemerédi's theorem in the vector space is known as the cap set problem. The Green–Tao theorem asserts the prime numbers contain arbitrarily long arithmetic progressions. It is not implied by Szemerédi's theorem because the primes have density 0 in the natural numbers.

  9. Roth's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Roth's_Theorem_on...

    Roth's theorem on arithmetic progressions (infinite version): A subset of the natural numbers with positive upper density contains a 3-term arithmetic progression. An alternate, more qualitative, formulation of the theorem is concerned with the maximum size of a Salem–Spencer set which is a subset of [ N ] = { 1 , … , N } {\displaystyle [N ...