When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  3. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...

  4. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    Given a set X, a relation R over X is a set of ordered pairs of elements from X, formally: R ⊆ { (x,y) | x, y ∈ X}. [2] [10] The statement (x,y) ∈ R reads "x is R-related to y" and is written in infix notation as xRy. [7] [8] The order of the elements is important; if x ≠ y then yRx can be true or false independently of xRy.

  5. Category of sets - Wikipedia

    en.wikipedia.org/wiki/Category_of_sets

    Every set is a projective object in Set (assuming the axiom of choice). The finitely presentable objects in Set are the finite sets. Since every set is a direct limit of its finite subsets, the category Set is a locally finitely presentable category. If C is an arbitrary category, the contravariant functors from C to Set are often an important ...

  6. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  7. Class (set theory) - Wikipedia

    en.wikipedia.org/wiki/Class_(set_theory)

    Within set theory, many collections of sets turn out to be proper classes. Examples include the class of all sets (the universal class), the class of all ordinal numbers, and the class of all cardinal numbers. One way to prove that a class is proper is to place it in bijection with the class of all ordinal numbers.

  8. Well-founded relation - Wikipedia

    en.wikipedia.org/wiki/Well-founded_relation

    The set of all finite strings over a fixed alphabet, with the order defined by s < t if and only if s is a proper substring of t. The set N × N of pairs of natural numbers, ordered by (n 1, n 2) < (m 1, m 2) if and only if n 1 < m 1 and n 2 < m 2. Every class whose elements are sets, with the relation ∈ ("is an element of"). This is the ...

  9. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    The Minkowski sum of two sets and of real numbers is the set + := {+:,} consisting of all possible arithmetic sums of pairs of numbers, one from each set. The infimum and supremum of the Minkowski sum satisfy, if A ≠ ∅ ≠ B {\displaystyle A\neq \varnothing \neq B} inf ( A + B ) = ( inf A ) + ( inf B ) {\displaystyle \inf(A+B)=(\inf A ...