Search results
Results From The WOW.Com Content Network
Smoothing may be distinguished from the related and partially overlapping concept of curve fitting in the following ways: . curve fitting often involves the use of an explicit function form for the result, whereas the immediate results from smoothing are the "smoothed" values with no later use made of a functional form if there is one;
The first step of the second pass is to create an array of size n, which is the maximum iteration count: NumIterationsPerPixel. Next, one must iterate over the array of pixel-iteration count pairs, IterationCounts[][], and retrieve each pixel's saved iteration count, i, via e.g. i = IterationCounts[x][y].
Kernel density estimation of 100 normally distributed random numbers using different smoothing bandwidths.. In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.
is a smoothing parameter, controlling the trade-off between fidelity to the data and roughness of the function estimate. This is often estimated by generalized cross-validation, [ 3 ] or by restricted marginal likelihood (REML) [ citation needed ] which exploits the link between spline smoothing and Bayesian estimation (the smoothing penalty ...
Scatterplots may be smoothed by fitting a line to the data points in a diagram. This line attempts to display the non-random component of the association between the variables in a 2D scatter plot. Smoothing attempts to separate the non-random behaviour in the data from the random fluctuations, removing or reducing these fluctuations, and ...
The "moving average filter" is a trivial example of a Savitzky–Golay filter that is commonly used with time series data to smooth out short-term fluctuations and highlight longer-term trends or cycles. Each subset of the data set is fit with a straight horizontal line as opposed to a higher order polynomial.
The function is named in honor of von Hann, who used the three-term weighted average smoothing technique on meteorological data. [6] [2] However, the term Hanning function is also conventionally used, [7] derived from the paper in which the term hanning a signal was used to mean applying the Hann window to it.
Smoothstep is a family of sigmoid-like interpolation and clamping functions commonly used in computer graphics, [1] [2] video game engines, [3] and machine learning. [ 4 ] The function depends on three parameters, the input x , the "left edge" and the "right edge", with the left edge being assumed smaller than the right edge.