When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    It is named after the mathematician Carl Friedrich Gauss. The graph of a Gaussian is a characteristic symmetric " bell curve " shape. The parameter a is the height of the curve's peak, b is the position of the center of the peak, and c (the standard deviation , sometimes called the Gaussian RMS width) controls the width of the "bell".

  3. Class number formula - Wikipedia

    en.wikipedia.org/wiki/Class_number_formula

    The idea of the proof of the class number formula is most easily seen when K = Q(i).In this case, the ring of integers in K is the Gaussian integers.. An elementary manipulation shows that the residue of the Dedekind zeta function at s = 1 is the average of the coefficients of the Dirichlet series representation of the Dedekind zeta function.

  4. Table of Gaussian integer factorizations - Wikipedia

    en.wikipedia.org/wiki/Table_of_Gaussian_Integer...

    The entry 4+2i = −i(1+i) 2 (2+i), for example, could also be written as 4+2i= (1+i) 2 (1−2i). The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right complex half plane with absolute value of the real part larger than or equal to the absolute value of the imaginary part.

  5. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  6. Class number problem - Wikipedia

    en.wikipedia.org/wiki/Class_number_problem

    For given low class number (such as 1, 2, and 3), Gauss gives lists of imaginary quadratic fields with the given class number and believes them to be complete. Infinitely many real quadratic fields with class number one Gauss conjectures that there are infinitely many real quadratic fields with class number one.

  7. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  8. Gaussian quadrature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_quadrature

    With the n-th polynomial normalized to give P n (1) = 1, the i-th Gauss node, x i, is the i-th root of P n and the weights are given by the formula [3] = [′ ()]. Some low-order quadrature rules are tabulated below (over interval [−1, 1] , see the section below for other intervals).

  9. Chebyshev–Gauss quadrature - Wikipedia

    en.wikipedia.org/wiki/Chebyshev–Gauss_quadrature

    In numerical analysis Chebyshev–Gauss quadrature is an extension of Gaussian quadrature method for approximating the value of integrals of the following kind: ∫ − 1 + 1 f ( x ) 1 − x 2 d x {\displaystyle \int _{-1}^{+1}{\frac {f(x)}{\sqrt {1-x^{2}}}}\,dx}