When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  3. Relativistic rocket equation - Wikipedia

    en.wikipedia.org/wiki/Relativistic_rocket

    In the relativistic case, the equation is still valid if is the acceleration in the rocket's reference frame and is the rocket's proper time because at velocity 0 the relationship between force and acceleration is the same as in the classical case. Solving this equation for the ratio of initial mass to final mass gives

  4. Konstantin Tsiolkovsky - Wikipedia

    en.wikipedia.org/wiki/Konstantin_Tsiolkovsky

    Tsiolkovsky calculated, using the Tsiolkovsky equation, [16]: 1 that the horizontal speed required for a minimal orbit around the Earth is 8,000 m/s (5 miles per second) and that this could be achieved by means of a multistage rocket fueled by liquid oxygen and liquid hydrogen. In the article "Exploration of Outer Space by Means of Rocket ...

  5. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    To derive the equations of special relativity, one must start with two other The laws of physics are invariant under transformations between inertial frames. In other words, the laws of physics will be the same whether you are testing them in a frame 'at rest', or a frame moving with a constant velocity relative to the 'rest' frame.

  6. Working mass - Wikipedia

    en.wikipedia.org/wiki/Working_mass

    Working mass, also referred to as reaction mass, is a mass against which a system operates in order to produce acceleration.In the case of a chemical rocket, for example, the reaction mass is the product of the burned fuel shot backwards to provide propulsion.

  7. Delta-v budget - Wikipedia

    en.wikipedia.org/wiki/Delta-v_budget

    The Tsiolkovsky rocket equation shows that the delta-v of a rocket (stage) is proportional to the logarithm of the fuelled-to-empty mass ratio of the vehicle, and to the specific impulse of the rocket engine. A key goal in designing space-mission trajectories is to minimize the required delta-v to reduce the size and expense of the rocket that ...

  8. Mass ratio - Wikipedia

    en.wikipedia.org/wiki/Mass_ratio

    This equation can be rewritten in the following equivalent form: = / The fraction on the left-hand side of this equation is the rocket's mass ratio by definition. This equation indicates that a Δv of n {\displaystyle n} times the exhaust velocity requires a mass ratio of e n {\displaystyle e^{n}} .

  9. Orbital maneuver - Wikipedia

    en.wikipedia.org/wiki/Orbital_maneuver

    Rocket mass ratios versus final velocity calculated from the rocket equation. The Tsiolkovsky rocket equation, or ideal rocket equation, can be useful for analysis of maneuvers by vehicles using rocket propulsion. [2] A rocket applies acceleration to itself (a thrust) by expelling part of its mass at high speed. The rocket itself moves due to ...