Search results
Results From The WOW.Com Content Network
The discrete logarithm problem is considered to be computationally intractable. That is, no efficient classical algorithm is known for computing discrete logarithms in general. A general algorithm for computing log b a in finite groups G is to raise b to larger and larger powers k until the desired a is found.
The discrete logarithm is the integer n solving the equation =, where x is an element of the group. Carrying out the exponentiation can be done efficiently, but the discrete logarithm is believed to be very hard to calculate in some groups.
Computing the discrete logarithm is the only known method for solving the CDH problem. But there is no proof that it is, in fact, the only method. It is an open problem to determine whether the discrete log assumption is equivalent to the CDH assumption, though in certain special cases this can be shown to be the case. [3] [4]
In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed.Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution.
Discrete logarithm records are the best results achieved to date in solving the discrete logarithm problem, which is the problem of finding solutions x to the ...
Such a value k is called the index or discrete logarithm of a to the base g modulo n. So g is a primitive root modulo n if and only if g is a generator of the multiplicative group of integers modulo n. Gauss defined primitive roots in Article 57 of the Disquisitiones Arithmeticae (1801), where he credited Euler with coining the term.
In computational number theory and computational algebra, Pollard's kangaroo algorithm (also Pollard's lambda algorithm, see Naming below) is an algorithm for solving the discrete logarithm problem. The algorithm was introduced in 1978 by the number theorist John M. Pollard , in the same paper as his better-known Pollard's rho algorithm for ...
The definition of e x as the exponential function allows defining b x for every positive real numbers b, in terms of exponential and logarithm function. Specifically, the fact that the natural logarithm ln( x ) is the inverse of the exponential function e x means that one has