Search results
Results From The WOW.Com Content Network
The discrete logarithm problem is considered to be computationally intractable. That is, no efficient classical algorithm is known for computing discrete logarithms in general. A general algorithm for computing log b a in finite groups G is to raise b to larger and larger powers k until the desired a is found.
The discrete logarithm is the integer n solving the equation =, where x is an element of the group. Carrying out the exponentiation can be done efficiently, but the discrete logarithm is believed to be very hard to calculate in some groups.
For example, a logarithm of base 2 8 = 256 will produce a measurement in bytes per symbol, and a logarithm of base 10 will produce a measurement in decimal digits (or hartleys) per symbol. Intuitively, the entropy H X of a discrete random variable X is a measure of the amount of uncertainty associated with the value of X when only its ...
Discrete logarithm records are the best results achieved to date in solving the discrete logarithm problem, which is the problem of finding solutions x to the equation = given elements g and h of a finite cyclic group G.
Computing the discrete logarithm is the only known method for solving the CDH problem. But there is no proof that it is, in fact, the only method. It is an open problem to determine whether the discrete log assumption is equivalent to the CDH assumption, though in certain special cases this can be shown to be the case. [3] [4]
In quantum computing, the quantum Fourier transform (QFT) is a linear transformation on quantum bits, and is the quantum analogue of the discrete Fourier transform.The quantum Fourier transform is a part of many quantum algorithms, notably Shor's algorithm for factoring and computing the discrete logarithm, the quantum phase estimation algorithm for estimating the eigenvalues of a unitary ...
In computational number theory and computational algebra, Pollard's kangaroo algorithm (also Pollard's lambda algorithm, see Naming below) is an algorithm for solving the discrete logarithm problem. The algorithm was introduced in 1978 by the number theorist John M. Pollard , in the same paper as his better-known Pollard's rho algorithm for ...
Quantum algorithms that offer more than a polynomial speedup over the best-known classical algorithm include Shor's algorithm for factoring and the related quantum algorithms for computing discrete logarithms, solving Pell's equation, and more generally solving the hidden subgroup problem for abelian finite groups. [57]