When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Recamán's sequence - Wikipedia

    en.wikipedia.org/wiki/Recamán's_sequence

    In mathematics and computer science, Recamán's sequence [1] [2] is a well known sequence defined by a recurrence relation. Because its elements are related to the previous elements in a straightforward way, they are often defined using recursion.

  3. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    Least common multiple = 2 × 2 × 2 × 2 × 3 × 3 × 5 = 720 Greatest common divisor = 2 × 2 × 3 = 12 Product = 2 × 2 × 2 × 2 × 3 × 2 × 2 × 3 × 3 × 5 = 8640. This also works for the greatest common divisor (gcd), except that instead of multiplying all of the numbers in the Venn diagram, one multiplies only the prime factors that are ...

  4. Recursion (computer science) - Wikipedia

    en.wikipedia.org/wiki/Recursion_(computer_science)

    In the case of a perfect binary tree of height h, there are 2 h+11 nodes and 2 h+1 Null pointers as children (2 for each of the 2 h leaves), so short-circuiting cuts the number of function calls in half in the worst case. In C, the standard recursive algorithm may be implemented as:

  5. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    s −2 = 1, t −2 = 0 s −1 = 0, t −1 = 1. Using this recursion, Bézout's integers s and t are given by s = s N and t = t N, where N + 1 is the step on which the algorithm terminates with r N+1 = 0. The validity of this approach can be shown by induction. Assume that the recursion formula is correct up to step k − 1 of the algorithm; in ...

  6. Corecursion - Wikipedia

    en.wikipedia.org/wiki/Corecursion

    In computer science, corecursion is a type of operation that is dual to recursion.Whereas recursion works analytically, starting on data further from a base case and breaking it down into smaller data and repeating until one reaches a base case, corecursion works synthetically, starting from a base case and building it up, iteratively producing data further removed from a base case.

  7. Primitive recursive function - Wikipedia

    en.wikipedia.org/wiki/Primitive_recursive_function

    In computability theory, a primitive recursive function is, roughly speaking, a function that can be computed by a computer program whose loops are all "for" loops (that is, an upper bound of the number of iterations of every loop is fixed before entering the loop).

  8. Ackermann function - Wikipedia

    en.wikipedia.org/wiki/Ackermann_function

    For small values of m like 1, 2, or 3, the Ackermann function grows relatively slowly with respect to n (at most exponentially). For m ≥ 4 {\displaystyle m\geq 4} , however, it grows much more quickly; even A ( 4 , 2 ) {\displaystyle A(4,2)} is about 2.00353 × 10 19 728 , and the decimal expansion of A ( 4 , 3 ) {\displaystyle A(4,3)} is ...

  9. Longest common subsequence - Wikipedia

    en.wikipedia.org/wiki/Longest_common_subsequence

    For LCS(R 2, C 1), A is compared with A. The two elements match, so A is appended to ε, giving (A). For LCS(R 2, C 2), A and G do not match, so the longest of LCS(R 1, C 2), which is (G), and LCS(R 2, C 1), which is (A), is used. In this case, they each contain one element, so this LCS is given two subsequences: (A) and (G).