When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Longest common subsequence - Wikipedia

    en.wikipedia.org/wiki/Longest_common_subsequence

    The prefix S n of S is defined as the first n characters of S. [5] For example, the prefixes of S = (AGCA) are S 0 = S 1 = (A) S 2 = (AG) S 3 = (AGC) S 4 = (AGCA). Let LCS(X, Y) be a function that computes a longest subsequence common to X and Y. Such a function has two interesting properties.

  3. Recamán's sequence - Wikipedia

    en.wikipedia.org/wiki/Recamán's_sequence

    In mathematics and computer science, Recamán's sequence [1] [2] is a well known sequence defined by a recurrence relation. Because its elements are related to the previous elements in a straightforward way, they are often defined using recursion.

  4. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2. By the same principle, 10 is the least common multiple of −5 and −2 as well.

  5. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  6. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    s −2 = 1, t −2 = 0 s −1 = 0, t −1 = 1. Using this recursion, Bézout's integers s and t are given by s = s N and t = t N, where N + 1 is the step on which the algorithm terminates with r N+1 = 0. The validity of this approach can be shown by induction. Assume that the recursion formula is correct up to step k − 1 of the algorithm; in ...

  7. Primitive recursive function - Wikipedia

    en.wikipedia.org/wiki/Primitive_recursive_function

    In computability theory, a primitive recursive function is, roughly speaking, a function that can be computed by a computer program whose loops are all "for" loops (that is, an upper bound of the number of iterations of every loop is fixed before entering the loop).

  8. Corecursion - Wikipedia

    en.wikipedia.org/wiki/Corecursion

    In computer science, corecursion is a type of operation that is dual to recursion.Whereas recursion works analytically, starting on data further from a base case and breaking it down into smaller data and repeating until one reaches a base case, corecursion works synthetically, starting from a base case and building it up, iteratively producing data further removed from a base case.

  9. Ackermann function - Wikipedia

    en.wikipedia.org/wiki/Ackermann_function

    For small values of m like 1, 2, or 3, the Ackermann function grows relatively slowly with respect to n (at most exponentially). For m ≥ 4 {\displaystyle m\geq 4} , however, it grows much more quickly; even A ( 4 , 2 ) {\displaystyle A(4,2)} is about 2.00353 × 10 19 728 , and the decimal expansion of A ( 4 , 3 ) {\displaystyle A(4,3)} is ...