Search results
Results From The WOW.Com Content Network
Key to understanding whether the lung is involved in a particular case of hypoxemia is the difference between the alveolar and the arterial oxygen levels; this A-a difference is often called the A-a gradient and is normally small. The arterial oxygen partial pressure is obtained directly from an arterial blood gas determination. The oxygen ...
Therefore, the "net" movement of oxygen molecules (the difference between the number of molecules either entering or leaving the cell) is into the cell. In other words, there is a net movement of oxygen molecules down the concentration gradient. In astronomy, atomic diffusion is used to model the stellar atmospheres of chemically peculiar stars.
The diffusion capacity for oxygen () is the proportionality factor relating the rate of oxygen uptake into the lung to the oxygen gradient between the capillary blood and the alveoli (per Fick's laws of diffusion).
2, [1] or A–a gradient), is a measure of the difference between the alveolar concentration (A) of oxygen and the arterial (a) concentration of oxygen. It is a useful parameter for narrowing the differential diagnosis of hypoxemia. [2] The A–a gradient helps to assess the integrity of the alveolar capillary unit.
The rest of the difference is due to the continual uptake of oxygen by the pulmonary capillaries, and the continual diffusion of CO 2 out of the capillaries into the alveoli. The alveolar pO 2 is not routinely measured but is calculated from blood gas measurements by the alveolar gas equation .
The arteriovenous oxygen difference, or a-vO 2 diff, is the difference in the oxygen content of the blood between the arterial blood and the venous blood. It is an indication of how much oxygen is removed from the blood in capillaries as the blood circulates in the body.
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
Molecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of the particles.