When.com Web Search

  1. Ad

    related to: boolean algebra identity formula

Search results

  1. Results From The WOW.Com Content Network
  2. Boolean algebra - Wikipedia

    en.wikipedia.org/wiki/Boolean_algebra

    A law of Boolean algebra is an identity such as x ∨ (y ∨ z) = (x ∨ y) ∨ z between two Boolean terms, where a Boolean term is defined as an expression built up from variables and the constants 0 and 1 using the operations ∧, ∨, and ¬. The concept can be extended to terms involving other Boolean operations such as ⊕, →, and ≡ ...

  3. Boole's expansion theorem - Wikipedia

    en.wikipedia.org/wiki/Boole's_expansion_theorem

    Boole's expansion theorem, often referred to as the Shannon expansion or decomposition, is the identity: = + ′ ′, where is any Boolean function, is a variable, ′ is the complement of , and and ′ are with the argument set equal to and to respectively.

  4. Boolean algebra (structure) - Wikipedia

    en.wikipedia.org/wiki/Boolean_algebra_(structure)

    The term "Boolean algebra" honors George Boole (1815–1864), a self-educated English mathematician. He introduced the algebraic system initially in a small pamphlet, The Mathematical Analysis of Logic, published in 1847 in response to an ongoing public controversy between Augustus De Morgan and William Hamilton, and later as a more substantial book, The Laws of Thought, published in 1854.

  5. Boolean algebras canonically defined - Wikipedia

    en.wikipedia.org/wiki/Boolean_algebras...

    Boolean algebra is a mathematically rich branch of abstract algebra. Stanford Encyclopaedia of Philosophy defines Boolean algebra as 'the algebra of two-valued logic with only sentential connectives, or equivalently of algebras of sets under union and complementation.' [1] Just as group theory deals with groups, and linear algebra with vector spaces, Boolean algebras are models of the ...

  6. Consensus theorem - Wikipedia

    en.wikipedia.org/wiki/Consensus_theorem

    In Boolean algebra, the consensus theorem or rule of consensus [1] is the identity: ¯ = ¯ The consensus or resolvent of the terms and ¯ is . It is the conjunction of all the unique literals of the terms, excluding the literal that appears unnegated in one term and negated in the other.

  7. Logical conjunction - Wikipedia

    en.wikipedia.org/wiki/Logical_conjunction

    The conjunctive identity is true, which is to say that AND-ing an expression with true will never change the value of the expression. In keeping with the concept of vacuous truth , when conjunction is defined as an operator or function of arbitrary arity , the empty conjunction (AND-ing over an empty set of operands) is often defined as having ...

  8. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    A left identity element that is also a right identity element if called an identity element. The empty set ∅ {\displaystyle \varnothing } is an identity element of binary union ∪ {\displaystyle \cup } and symmetric difference , {\displaystyle \triangle ,} and it is also a right identity element of set subtraction ∖ : {\displaystyle ...

  9. Two-element Boolean algebra - Wikipedia

    en.wikipedia.org/wiki/Two-element_Boolean_algebra

    A powerful and nontrivial metatheorem states that any identity of 2 holds for all Boolean algebras. [1] Conversely, an identity that holds for an arbitrary nontrivial Boolean algebra also holds in 2. Hence all identities of Boolean algebra are captured by 2. This theorem is useful because any equation in 2 can be verified by a decision procedure.