When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Green's function for the three-variable Laplace equation

    en.wikipedia.org/wiki/Green's_function_for_the...

    Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in order to determine the potential function. Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation ...

  3. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    Green's functions are also useful tools in solving wave equations and diffusion equations. In quantum mechanics, Green's function of the Hamiltonian is a key concept with important links to the concept of density of states. The Green's function as used in physics is usually defined with the opposite sign, instead.

  4. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  5. Green's identities - Wikipedia

    en.wikipedia.org/wiki/Green's_identities

    See Green's functions for the Laplacian or [2] for a detailed argument, with an alternative. It can be further verified that the above identity also applies when ψ is a solution to the Helmholtz equation or wave equation and G is the appropriate Green's function.

  6. d'Alembert operator - Wikipedia

    en.wikipedia.org/wiki/D'Alembert_operator

    The Green's function, (~ ~ ′), for the d'Alembertian is defined by the equation (~ ~ ′) = (~ ~ ′)where (~ ~ ′) is the multidimensional Dirac delta function ...

  7. Impulse response - Wikipedia

    en.wikipedia.org/wiki/Impulse_response

    When the transfer function and the Laplace transform of the input are known, this convolution may be more complicated than the alternative of multiplying two functions in the frequency domain. The impulse response, considered as a Green's function, can be thought of as an "influence function": how a point of input influences output.

  8. Dirichlet problem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_problem

    The Green's function to be used in the above integral is one which vanishes on the boundary: (,) = for and . Such a Green's function is usually a sum of the free-field Green's function and a harmonic solution to the differential equation.

  9. Poisson kernel - Wikipedia

    en.wikipedia.org/wiki/Poisson_kernel

    In mathematics, and specifically in potential theory, the Poisson kernel is an integral kernel, used for solving the two-dimensional Laplace equation, given Dirichlet boundary conditions on the unit disk. The kernel can be understood as the derivative of the Green's function for the Laplace equation.