Search results
Results From The WOW.Com Content Network
The Smith predictor (invented by O. J. M. Smith in 1957) is a type of predictive controller designed to control systems with a significant feedback time delay. The idea can be illustrated as follows. Suppose the plant consists of () followed by a pure time delay .
The time-to-digital converter measures the time between a start event and a stop event. There is also a digital-to-time converter or delay generator. The delay generator converts a number to a time delay. When the delay generator gets a start pulse at its input, then it outputs a stop pulse after the specified delay.
A digital delay generator (also known as digital-to-time converter) is a piece of electronic test equipment that provides precise delays for triggering, syncing, delaying, and gating events. These generators are used in many experiments, controls, and processes where electronic timing of a single event or multiple events to a standard timing ...
The precise architecture of TDNNs (time-delays, number of layers) is mostly determined by the designer depending on the classification problem and the most useful context sizes. The delays or context windows are chosen specific to each application. Work has also been done to create adaptable time-delay TDNNs [10] where this manual tuning is ...
The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.
The time delay is usually measured in slots, which are fixed-length periods (or slices) of time on the network. In a binary exponential backoff algorithm (i.e. one where b = 2), after c collisions, each retransmission is delayed by a random number of slot times between 0 and 2 c − 1. After the first collision, each sender will wait 0 or 1 ...
If the sent data packet as well as the response packet have the same length, the roundtrip time can be expressed as: Roundtrip time = 2 × Packet delivery time + processing delay. In case of only one physical link, the above expression corresponds to: Link roundtrip time = 2 × packet transmission time + 2 × propagation delay + processing delay
A space–time trade off can be applied to the problem of data storage. If data is stored uncompressed, it takes more space but access takes less time than if the data were stored compressed (since compressing the data reduces the amount of space it takes, but it takes time to run the decompression algorithm). Depending on the particular ...