Search results
Results From The WOW.Com Content Network
This equation shows how production of ozone is directly related to the solar intensity, and hence to the zenith angle, due to the reliance on photolysis of NO 2. The yield of ozone will therefore be greatest during the day, especially at noon and during the summer season.
In fluid dynamics, aerodynamic potential flow codes or panel codes are used to determine the fluid velocity, and subsequently the pressure distribution, on an object. This may be a simple two-dimensional object, such as a circle or wing, or it may be a three-dimensional vehicle.
The vortex lattice method is built on the theory of ideal flow, also known as Potential flow.Ideal flow is a simplification of the real flow experienced in nature, however for many engineering applications this simplified representation has all of the properties that are important from the engineering point of view.
Thus, ozone is mainly removed by ozone conversion. Both ozone creation and conversion depend linearly on oxygen atom concentration, but in ozone creation an oxygen atom must encounter an oxygen molecule and another air molecule (typically nitrogen) simultaneously, while in ozone conversion an oxygen atom must only encounter an ozone molecule.
Lifting line theory supposes wings that are long and thin with negligible fuselage, akin to a thin bar (the eponymous "lifting line") of span 2s driven through the fluid. . From the Kutta–Joukowski theorem, the lift L(y) on a 2-dimensional segment of the wing at distance y from the fuselage is proportional to the circulation Γ(y) about the bar a
Averaging the equations gives the Reynolds-averaged Navier–Stokes (RANS) equations, which govern the mean flow. However, the nonlinearity of the Navier–Stokes equations means that the velocity fluctuations still appear in the RANS equations, in the nonlinear term − ρ v i ′ v j ′ ¯ {\displaystyle -\rho {\overline {v_{i}^{\prime }v_{j ...
Flow around a wing. This incompressible flow satisfies the Euler equations. In fluid dynamics, the Euler equations are a set of partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal ...
A schematic diagram of the Blasius flow profile. The streamwise velocity component () / is shown, as a function of the similarity variable .. Using scaling arguments, Ludwig Prandtl [1] argued that about half of the terms in the Navier-Stokes equations are negligible in boundary layer flows (except in a small region near the leading edge of the plate).