Search results
Results From The WOW.Com Content Network
A pairing can also be considered as an R-linear map: (,), which matches the first definition by setting ():= (,). A pairing is called perfect if the above map Φ {\displaystyle \Phi } is an isomorphism of R -modules and the other evaluation map Φ ′ : N → Hom R ( M , L ) {\displaystyle \Phi '\colon N\to \operatorname {Hom} _{R}(M,L ...
A linear program may be specified by a system of real variables (the coordinates for a point in Euclidean space ), a system of linear constraints (specifying that the point lie in a halfspace; the intersection of these halfspaces is a convex polytope, the feasible region of the program), and a linear function (what to optimize).
In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation ≤ {\displaystyle \leq } on some set X {\displaystyle X} , which satisfies the following for all a , b {\displaystyle a,b} and c {\displaystyle c} in X {\displaystyle X} :
Linear programming problems are optimization problems in which the objective function and the constraints are all linear. In the primal problem, the objective function is a linear combination of n variables. There are m constraints, each of which places an upper bound on a linear combination of the n variables. The goal is to maximize the value ...
In mathematics, a dual system, dual pair or a duality over a field is a triple (,,) consisting of two vector spaces, and , over and a non-degenerate bilinear map:.. In mathematics, duality is the study of dual systems and is important in functional analysis.
The max-flow min-cut theorem is a special case of the strong duality theorem: flow-maximization is the primal LP, and cut-minimization is the dual LP. See Max-flow min-cut theorem#Linear program formulation. Other graph-related theorems can be proved using the strong duality theorem, in particular, Konig's theorem. [9]
This area also includes one of order theory's most famous open problems, the 1/3–2/3 conjecture, which states that in any finite partially ordered set that is not totally ordered there exists a pair (,) of elements of for which the linear extensions of in which < number between 1/3 and 2/3 of the total number of linear extensions of . [11 ...
is the linear combination of vectors and such that = +. In mathematics, a linear combination or superposition is an expression constructed from a set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of x and y would be any expression of the form ax + by, where a and b are constants).