When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    In an increasing system, the time constant is the time for the system's step response to reach 1 − 1 / e ≈ 63.2% of its final (asymptotic) value (say from a step increase). In radioactive decay the time constant is related to the decay constant ( λ ), and it represents both the mean lifetime of a decaying system (such as an atom) before it ...

  3. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    m is a divisor of n (also called m divides n, or n is divisible by m) if all prime factors of m have at least the same multiplicity in n. The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then ...

  4. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is called a composite number, or it is not, in which case it is called a prime number. For example, 15 is a composite number because 15 = 3 · 5, but 7 is a prime number because it cannot be decomposed in this way.

  5. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    The Darcy-Weisbach equation was difficult to use because the friction factor was difficult to estimate. [7] In 1906, Hazen and Williams provided an empirical formula that was easy to use. The general form of the equation relates the mean velocity of water in a pipe with the geometric properties of the pipe and slope of the energy line.

  6. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    Another inefficient approach is to find the prime factors of one or both numbers. As noted above, the GCD equals the product of the prime factors shared by the two numbers a and b. [8] Present methods for prime factorization are also inefficient; many modern cryptography systems even rely on that inefficiency. [11]

  7. Composite number - Wikipedia

    en.wikipedia.org/wiki/Composite_number

    Composite numbers can be arranged into rectangles but prime numbers cannot. A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Equivalently, it is a positive integer that has at least one divisor other than 1 and itself. [1][2] Every positive integer is composite, prime, or the unit 1, so ...

  8. Mersenne prime - Wikipedia

    en.wikipedia.org/wiki/Mersenne_prime

    Mersenne primes (of form 2^ p − 1 where p is a prime) In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form Mn = 2n − 1 for some integer n. They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17th century.

  9. Shor's algorithm - Wikipedia

    en.wikipedia.org/wiki/Shor's_algorithm

    On a quantum computer, to factor an integer , Shor's algorithm runs in polynomial time, meaning the time taken is polynomial in , where is the size of the integer given as input. [6] Specifically, it takes quantum gates of order using fast multiplication, [7] or even utilizing the asymptotically fastest multiplication algorithm currently known ...