When.com Web Search

  1. Ads

    related to: factorial of a decimal number example

Search results

  1. Results From The WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    In mathematics, the factorial of a non-negative integer , denoted by , is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: For example, The value of 0! is 1, according to the convention for an empty product. [1]

  3. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for

  4. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    Comparison of Stirling's approximation with the factorial. In mathematics, Stirling's approximation (or Stirling's formula) is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of . It is named after James Stirling, though a related but less precise result was first stated ...

  5. Trailing zero - Wikipedia

    en.wikipedia.org/wiki/Trailing_zero

    Trailing zero. In mathematics, trailing zeros are a sequence of 0 in the decimal representation (or more generally, in any positional representation) of a number, after which no other digits follow. Trailing zeros to the right of a decimal point, as in 12.340, don't affect the value of a number and may be omitted if all that is of interest is ...

  6. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is, Restated, this says that for even n, the double factorial [2] is while for odd n it is For example, 9‼ = 9 × 7 × 5 × 3 × 1 = 945. The zero double factorial 0‼ ...

  7. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula. which using factorial notation can be compactly expressed as.

  8. Stirling number - Wikipedia

    en.wikipedia.org/wiki/Stirling_number

    Stirling number. In mathematics, Stirling numbers arise in a variety of analytic and combinatorial problems. They are named after James Stirling, who introduced them in a purely algebraic setting in his book Methodus differentialis (1730). [1] They were rediscovered and given a combinatorial meaning by Masanobu Saka in 1782.

  9. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    A general theory covering such relations, including the falling and rising factorial functions, is given by the theory of polynomial sequences of binomial type and Sheffer sequences. Falling and rising factorials are Sheffer sequences of binomial type, as shown by the relations: where the coefficients are the same as those in the binomial theorem.