Ad
related to: the first lyman transition hydrogen electron model
Search results
Results From The WOW.Com Content Network
In physics and chemistry, the Lyman series is a hydrogen spectral series of transitions and resulting ultraviolet emission lines of the hydrogen atom as an electron goes from n ≥ 2 to n = 1 (where n is the principal quantum number), the lowest energy level of the electron (groundstate). The transitions are named sequentially by Greek letters ...
The Bohr model was later replaced by quantum mechanics in which the electron occupies an atomic orbital rather than an orbit, but the allowed energy levels of the hydrogen atom remained the same as in the earlier theory. Spectral emission occurs when an electron transitions, or jumps, from a higher energy state to a lower energy state.
Lyman-alpha, typically denoted by Ly-α, is a spectral line of hydrogen (or, more generally, of any one-electron atom) in the Lyman series. It is emitted when the atomic electron transitions from an n = 2 orbital to the ground state ( n = 1), where n is the principal quantum number .
Relativistic corrections (Dirac) to the energy levels of a hydrogen atom from Bohr's model. The fine structure correction predicts that the Lyman-alpha line (emitted in a transition from n = 2 to n = 1) must split into a doublet. The total effect can also be obtained by using the Dirac equation.
The anomalous effect appears on transitions where the net spin of the electrons is non-zero. It was called "anomalous" because the electron spin had not yet been discovered, and so there was no good explanation for it at the time that Zeeman observed the effect.
In the Bohr model of the hydrogen atom, the electron transition from energy level = to = results in the emission of an H-alpha photon.. Hydrogen-alpha, typically shortened to H-alpha or Hα, is a deep-red visible spectral line of the hydrogen atom with a wavelength of 656.28 nm in air and 656.46 nm in vacuum.
The energy of the Lyman-alpha transition is 10.2 eV—this energy is approximately two million times greater than the hydrogen line, and is produced by astrophysical sources such as stars and quasars. Neutral hydrogen absorbs Lyman-alpha photons, and then re-emits Lyman-alpha photons, and may enter either of the two spin states.
The Lyman-alpha forest was first discovered in 1970 by astronomer Roger Lynds in an observation of the quasar 4C 05.34. [1] Quasar 4C 05.34 was the farthest object observed to that date, and Lynds noted an unusually large number of absorption lines in its spectrum and suggested that most of the absorption lines were all due to the same Lyman-alpha transition. [2]