When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orders of magnitude (speed) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(speed)

    3.3–5.0 × 10 −9 Average walking speed—below a speed of about 2 m/s, it is more efficient to walk than to run, but above that speed, it is more efficient to run. 2.39

  3. Rotational frequency - Wikipedia

    en.wikipedia.org/wiki/Rotational_frequency

    It can also be formulated as the instantaneous rate of change of the number of rotations, N, with respect to time, t: n=dN/dt (as per International System of Quantities). [4] Similar to ordinary period, the reciprocal of rotational frequency is the rotation period or period of rotation, T=ν −1 =n −1, with dimension of time (SI unit seconds).

  4. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Jerk (also known as Jolt) is the rate of change of an object's acceleration over time. It is a vector quantity (having both magnitude and direction). Jerk is most commonly denoted by the symbol j and expressed in m/s 3 ( SI units ) or standard gravities per second ( g 0 /s).

  5. Speed of gravity - Wikipedia

    en.wikipedia.org/wiki/Speed_of_gravity

    Putting the Sun immobile at the origin, when the Earth is moving in an orbit of radius R with velocity v presuming that the gravitational influence moves with velocity c, moves the Sun's true position ahead of its optical position, by an amount equal to vR/c, which is the travel time of gravity from the sun to the Earth times the relative ...

  6. Speed - Wikipedia

    en.wikipedia.org/wiki/Speed

    Average speed does not describe the speed variations that may have taken place during shorter time intervals (as it is the entire distance covered divided by the total time of travel), and so average speed is often quite different from a value of instantaneous speed. [3] If the average speed and the time of travel are known, the distance ...

  7. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    Although velocity is defined as the rate of change of position, it is often common to start with an expression for an object's acceleration. As seen by the three green tangent lines in the figure, an object's instantaneous acceleration at a point in time is the slope of the line tangent to the curve of a v ( t ) graph at that point.

  8. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    This rate of change in velocity can also be denoted as 9.806 65 (metres per second) per second, or 9.806 65 m/s 2. For example: An acceleration of 1 g equates to a rate of change in velocity of approximately 35 km/h (22 mph) for each second that elapses.

  9. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    In all cases, the body is assumed to start from rest, and air resistance is neglected. Generally, in Earth's atmosphere, all results below will therefore be quite inaccurate after only 5 seconds of fall (at which time an object's velocity will be a little less than the vacuum value of 49 m/s (9.8 m/s 2 × 5 s