Search results
Results From The WOW.Com Content Network
Intermediate mesoderm or intermediate mesenchyme is a narrow section of the mesoderm (one of the three primary germ layers) located between the paraxial mesoderm and the lateral plate of the developing embryo. [1] The intermediate mesoderm develops into vital parts of the urogenital system (kidneys, gonads and respective tracts).
A mesokaryote or mesokaryotic organism is a single-celled eukaryote that shows intermediate resemblance to both prokaryotes and 'higher' eukaryotes. The term originates from a 1965 hypothesis by John David Dodge, who proposed that certain eukaryotes (mainly dinoflagellates) with closed mitosis and other traits considered 'primitive' were an intermediate step between prokaryotes and the ...
The mitosis process in the cells of eukaryotic organisms follows a similar pattern, but with variations in three main details. "Closed" and "open" mitosis can be distinguished on the basis of nuclear envelope remaining intact or breaking down. An intermediate form with partial degradation of the nuclear envelope is called "semiopen" mitosis.
Mesenchyme (/ ˈ m ɛ s ə n k aɪ m ˈ m iː z ən-/ [1]) is a type of loosely organized animal embryonic connective tissue of undifferentiated cells that give rise to most tissues, such as skin, blood or bone. [2] [3] The interactions between mesenchyme and epithelium help to form nearly every organ in the developing embryo. [4]
The intermediate mesoderm gives rise to the urogenital tract and consists of cells that migrate from the middle region of the primitive line. Other cells migrate through the caudal part of the primitive line and form the lateral mesoderm, and those cells migrating by the most caudal part contribute to the extraembryonic mesoderm.
The mesoderm is the middle layer of the three germ layers that develops during gastrulation in the very early development of the embryo of most animals. The outer layer is the ectoderm, and the inner layer is the endoderm. [1] [2] The mesoderm forms mesenchyme, mesothelium and coelomocytes. Mesothelium lines coeloms.
A 10 - 20 μm large somatic cell generally needs 24 hours to double its mass for mitosis. By this way it would take a very long time for that cell to reach the size of a mammalian egg with a diameter of 100 μm (some insects have eggs of about 1,000 μm or greater).
Together, these pathways provide the initial specification of the paraxial mesoderm and maintain this identity. [1] This specification process has now been fully recapitulated in vitro with the formation of paraxial mesoderm progenitors from pluripotent stem cells , using a directed differentiation approach.