Search results
Results From The WOW.Com Content Network
Field lines depicting the electric field created by a positive charge (left), negative charge (center), and uncharged object (right). A field line is a graphical visual aid for visualizing vector fields. It consists of an imaginary integral curve which is tangent to the field vector at each point along its length.
The spectral lines of mercury vapor lamp at wavelength 546.1 nm, showing anomalous Zeeman effect. (A) Without magnetic field. (B) With magnetic field, spectral lines split as transverse Zeeman effect. (C) With magnetic field, split as longitudinal Zeeman effect. The spectral lines were obtained using a Fabry–Pérot interferometer.
The principal U(1)-connection ∇ on the line bundle has a curvature F = ∇ 2, which is a two-form that automatically satisfies dF = 0 and can be interpreted as a field strength. If the line bundle is trivial with flat reference connection d we can write ∇ = d + A and F = dA with A the 1-form composed of the electric potential and the ...
No magnetic field in the direction of propagation. These are sometimes called E modes because there is only an electric field along the direction of propagation. Hybrid modes Non-zero electric and magnetic fields in the direction of propagation. See also Planar transmission line § Modes.
The index is not defined at any non-singular point (i.e., a point where the vector is non-zero). It is equal to +1 around a source, and more generally equal to (−1) k around a saddle that has k contracting dimensions and n−k expanding dimensions. The index of the vector field as a whole is defined when it has just finitely many zeroes. In ...
The magnetic field (B, green) is directed down through the plate. The Lorentz force of the magnetic field on the electrons in the metal induces a sideways current under the magnet. The magnetic field, acting on the sideways moving electrons, creates a Lorentz force opposite to the velocity of the sheet, which acts as a drag force on the sheet.
The circulation Γ of a vector field V around a closed curve C is the line integral: [3] [4] =. In a conservative vector field this integral evaluates to zero for every closed curve. That means that a line integral between any two points in the field is independent of the path taken.
an infinitely long line of uniform charge; an infinite plane of uniform charge; an infinitely long cylinder of uniform charge; As example "field near infinite line charge" is given below; Consider a point P at a distance r from an infinite line charge having charge density (charge per unit length) λ. Imagine a closed surface in the form of ...