Search results
Results From The WOW.Com Content Network
Important examples include propellant slosh in spacecraft tanks and rockets (especially upper stages), and the free surface effect (cargo slosh) in ships and trucks transporting liquids (for example oil and gasoline). However, it has become common to refer to liquid motion in a completely filled tank, i.e. without a free surface, as "fuel slosh".
A liquid hitting a wall in a container will cause sloshing. The free surface effect is a mechanism which can cause a watercraft to become unstable and capsize. [1]It refers to the tendency of liquids — and of unbound aggregates of small solid objects, like seeds, gravel, or crushed ore, whose behavior approximates that of liquids — to move in response to changes in the attitude of a craft ...
Slow motion video of a fruit falling into water. In fluid mechanics, a splash is a sudden disturbance to the otherwise quiescent free surface of a liquid (usually water).The disturbance is typically caused by a solid object suddenly hitting the surface, although splashes can occur in which moving liquid supplies the energy.
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
Capillary action of water (polar) compared to mercury (non-polar), in each case with respect to a polar surface such as glass (≡Si–OH). Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of external forces like gravity.
In other words, for an object floating on a liquid surface (like a boat) or floating submerged in a fluid (like a submarine in water or dirigible in air) the weight of the displaced liquid equals the weight of the object. Thus, only in the special case of floating does the buoyant force acting on an object equal the objects weight.
Time appears to move slower near massive objects because the object's gravitational force bends space-time. Technically, that means a watch strapped to your ankle will eventually fall behind one ...
An everyday example is the slow, smooth and optically transparent flow of shallow water over a smooth barrier. [ 8 ] When water leaves a tap without an aerator with little force, it first exhibits laminar flow, but as acceleration by the force of gravity immediately sets in, the Reynolds number of the flow increases with speed, and the laminar ...