When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    Mass near the M87* black hole is converted into a very energetic astrophysical jet, stretching five thousand light years. In physics, mass–energy equivalence is the relationship between mass and energy in a system's rest frame, where the two quantities differ only by a multiplicative constant and the units of measurement.

  3. Electronvolt - Wikipedia

    en.wikipedia.org/wiki/Electronvolt

    It is common in particle physics, where units of mass and energy are often interchanged, to express mass in units of eV/c 2, where c is the speed of light in vacuum (from E = mc 2). It is common to informally express mass in terms of eV as a unit of mass, effectively using a system of natural units with c set to 1. [3] The kilogram equivalent ...

  4. Light-second - Wikipedia

    en.wikipedia.org/wiki/Light-second

    The light-second is a unit of length useful in astronomy, telecommunications and relativistic physics. It is defined as the distance that light travels in free space in one second , and is equal to exactly 299 792 458 m (approximately 983 571 055 ft or 186 282 miles ).

  5. Natural units - Wikipedia

    en.wikipedia.org/wiki/Natural_units

    In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units.For example, the speed of light c may be set to 1, and it may then be omitted, equating mass and energy directly E = m rather than using c as a conversion factor in the typical mass–energy equivalence equation E = mc 2.

  6. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m 0, and momentum of magnitude p; the constant c is the speed of light. It assumes the special relativity case of flat spacetime [ 1 ] [ 2 ] [ 3 ] and that the particles are free.

  7. Geometrized unit system - Wikipedia

    en.wikipedia.org/wiki/Geometrized_unit_system

    We can convert a mass expressed in kilograms to the equivalent mass expressed in metres by multiplying by the conversion factor G/c 2. For example, the Sun's mass of 2.0 × 10 30 kg in SI units is equivalent to 1.5 km. This is half the Schwarzschild radius of a one solar mass black hole. All other conversion factors can be worked out by ...

  8. Planck units - Wikipedia

    en.wikipedia.org/wiki/Planck_units

    These equations have the same form as Maxwell's equations (and the Lorentz force equation) of electromagnetism, with mass density replacing charge density, and with ⁠ 1 / 4 π G ⁠ replacing ε 0. Normalizes the characteristic impedance Z g of gravitational radiation in free space to 1 (normally expressed as ⁠ 4 π G / c ⁠ ).

  9. Unit of time - Wikipedia

    en.wikipedia.org/wiki/Unit_of_time

    The Jiffy is the amount of time light takes to travel one femtometre (about the diameter of a nucleon). The Planck time is the time that light takes to travel one Planck length. The TU (for time unit) is a unit of time defined as 1024 μs for use in engineering. The svedberg is a time unit used for sedimentation rates (usually