When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gas constant - Wikipedia

    en.wikipedia.org/wiki/Gas_constant

    The gas constant R is defined as the Avogadro constant N A multiplied by the Boltzmann constant k (or k B): = = 6.022 140 76 × 10 23 mol −1 × 1.380 649 × 10 −23 J⋅K −1 = 8.314 462 618 153 24 J⋅K −1 ⋅mol −1. Since the 2019 revision of the SI, both N A and k are defined with exact numerical values when expressed in SI units. [2]

  3. Molar volume - Wikipedia

    en.wikipedia.org/wiki/Molar_volume

    The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...

  4. Fugacity capacity - Wikipedia

    en.wikipedia.org/wiki/Fugacity_capacity

    Where: R is the Ideal gas constant (8.314 Pa·m 3 /mol·K); T is the absolute temperature (K); H is the Henry's law constant for the target chemical (Pa/m 3 mol); K ow is the octanol-water partition coefficient for the target chemical (dimensionless ratio); P s is the vapor pressure of the target chemical (Pa); and v is the molar volume of the ...

  5. Real gas - Wikipedia

    en.wikipedia.org/wiki/Real_gas

    The constants appearing in the above equation are available in the following table when p is in kPa, V m is in , T is in K and R = 8.314 [7] Gas A 0 a B 0 b c; Air ...

  6. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  7. Boltzmann constant - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_constant

    Macroscopically, the ideal gas law states that, for an ideal gas, the product of pressure p and volume V is proportional to the product of amount of substance n and absolute temperature T: =, where R is the molar gas constant (8.314 462 618 153 24 J⋅K −1 ⋅mol −1). [4]

  8. Volume (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Volume_(thermodynamics)

    R is the gas constant, 8.314K −1 mol −1; T is the absolute temperature; To simplify, a volume of gas may be expressed as the volume it would have in standard conditions for temperature and pressure, which are 0 °C (32 °F) and 100 kPa. [2]

  9. Thermal equation of state of solids - Wikipedia

    en.wikipedia.org/wiki/Thermal_equation_of_state...

    To bypass this issue, the P-T dependent α p and K T are assumed to constant α 0 and K 0. [ 10 ] [ 11 ] But authors in publication [ 9 ] demonstrated that the model predicted pressure of Au and MgO from constant α 0 and K 0 at ambient pressure deviate from its experimental values, and the higher temperature, the higher deviation.