Search results
Results From The WOW.Com Content Network
A frequency distribution table is an arrangement of the values that one or more variables take in a sample. Each entry in the table contains the frequency or count of the occurrences of values within a particular group or interval, and in this way, the table summarizes the distribution of values in the sample.
A plot of the frequency of each word as a function of its frequency rank for two English language texts: Culpeper's Complete Herbal (1652) and H. G. Wells's The War of the Worlds (1898) in a log-log scale. The dotted line is the ideal law .
The example above is the simplest kind of contingency table, a table in which each variable has only two levels; this is called a 2 × 2 contingency table. In principle, any number of rows and columns may be used. There may also be more than two variables, but higher order contingency tables are difficult to represent visually.
The Smith chart (sometimes also called Smith diagram, Mizuhashi chart (水橋チャート), Mizuhashi–Smith chart (水橋スミスチャート), [1] [2] [3] Volpert–Smith chart (Диаграмма Вольперта—Смита) [4] [5] or Mizuhashi–Volpert–Smith chart), is a graphical calculator or nomogram designed for electrical and electronics engineers specializing in radio ...
In a histogram, each bin is for a different range of values, so altogether the histogram illustrates the distribution of values. But in a bar chart, each bar is for a different category of observations (e.g., each bar might be for a different population), so altogether the bar chart can be used to compare different categories.
There are distribution-free control charts for both Phase-I analysis and Phase-II monitoring. One of the most notable distribution-free control charts for Phase-I analysis is RS/P chart proposed by G. Capizzi and G. Masaratto. RS/P charts separately monitor location and scale parameters of a univariate process using two separate charts.
In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln( X ) has a normal distribution.
The normal distribution is NOT assumed nor required in the calculation of control limits. Thus making the IndX/mR chart a very robust tool. This is demonstrated by Wheeler using real-world data [4], [5] and for a number of highly non-normal probability distributions.