Search results
Results From The WOW.Com Content Network
For full-frame 35 mm-format cameras, the diagonal is 43 mm and a typical "normal" lens has a 50 mm focal length. A lens with a focal length shorter than normal is often referred to as a wide-angle lens (typically 35 mm and less, for 35 mm-format cameras), while a lens significantly longer than normal may be referred to as a telephoto lens ...
Curvature radius of lens/mirror r, R: m [L] Focal length f: m [L] Quantity (common name/s) (Common) symbol/s ... Thin lens equation f = lens focal length; x 1 ...
35 mm equivalent focal lengths are calculated by multiplying the actual focal length of the lens by the crop factor of the sensor. Typical crop factors are 1.26× – 1.29× for Canon (1.35× for Sigma "H") APS-H format, 1.5× for Nikon APS-C ("DX") format (also used by Sony, Pentax, Fuji, Samsung and others), 1.6× for Canon APS-C format, 2× for Micro Four Thirds format, 2.7× for 1-inch ...
The signs are reversed for the back surface of the lens: R 2 is positive if the surface is concave, and negative if it is convex. This is an arbitrary sign convention; some authors choose different signs for the radii, which changes the equation for the focal length. For a thin lens, d is much smaller than one of the radii of curvature (either ...
A 100 mm focal length f /4 lens has an entrance pupil diameter of 25 mm. A 100 mm focal length f /2 lens has an entrance pupil diameter of 50 mm. Since the area is proportional to the square of the pupil diameter, [6] the amount of light admitted by the f /2 lens is four times that of the f /4 lens.
The focal length is positive for converging lenses, and negative for diverging lenses. The reciprocal of the focal length, , is the optical power of the lens. If the focal length is in metres, this gives the optical power in dioptres (reciprocal metres).
For a single lens surrounded by a medium of refractive index n = 1, the locations of the principal points H and H ′ with respect to the respective lens vertices are given by the formulas = ′ = (), where f is the focal length of the lens, d is its thickness, and r 1 and r 2 are the radii of curvature of its surfaces. Positive signs indicate ...
The depth of field, and thus hyperfocal distance, changes with the focal length as well as the f-stop. This lens is set to the hyperfocal distance for f /32 at a focal length of 100 mm. In optics and photography, hyperfocal distance is a distance from a lens beyond which all objects can be brought into an "acceptable" focus.