Search results
Results From The WOW.Com Content Network
Glucose-6-phosphate can be used in other metabolic pathways or dephosphorylated to free glucose. Whereas free glucose can easily diffuse in and out of the cell, the phosphorylated form (glucose-6-phosphate) is locked in the cell, a mechanism by which intracellular glucose levels are controlled by cells.
Only plants possess the enzymes to convert acetyl-CoA into oxaloacetate from which malate can be formed to ultimately be converted to glucose. [1] However, acetyl-CoA can be converted to acetoacetate, which can decarboxylate to acetone (either spontaneously, or catalyzed by acetoacetate decarboxylase).
It occurs in liver cells, and will only phosphorylate the glucose entering the cell to form G6P, when the glucose in the blood is abundant. This being the first step in the glycolytic pathway in the liver, it therefore imparts an additional layer of control of the glycolytic pathway in this organ. [33]
In the liver, muscles, and the kidney, this process occurs to provide glucose when necessary. [12] A single glucose molecule is cleaved from a branch of glycogen, and is transformed into glucose-1-phosphate during this process. [1] This molecule can then be converted to glucose-6-phosphate, an intermediate in the glycolysis pathway. [1]
When needed, the liver releases glucose into the blood by performing glycogenolysis, the breakdown of glycogen into glucose. [48] The liver is also responsible for gluconeogenesis, which is the synthesis of glucose from certain amino acids, lactate, or glycerol. Adipose and liver cells produce glycerol by breakdown of fat, which the liver uses ...
The decarboxylation reactions occur before malate is formed in the cycle. Malate is the only substance that can be removed from the mitochondrion to enter the gluconeogenic pathway to form glucose or glycogen in the liver or any other tissue. [12] There can therefore be no net conversion of fatty acids into glucose.
These inactive forms of vitamin D get stored in fat cells until they are converted by the liver and kidneys into the active form of vitamin D. ... It may also help regulate cell growth and glucose ...
In the cytosol of the cell (for example a muscle cell), the glycerol will be converted to glyceraldehyde 3-phosphate, which is an intermediate in the glycolysis, to get further oxidized and produce energy. However, the main steps of fatty acids catabolism occur in the mitochondria. [16]