Ads
related to: statistically significant in excel examples download
Search results
Results From The WOW.Com Content Network
On the other hand, the approach remains valid even in the presence of correlation among the test statistics, as long as the Poisson distribution can be shown to provide a good approximation for the number of significant results. This scenario arises, for instance, when mining significant frequent itemsets from transactional datasets.
Excel maintains 15 figures in its numbers, but they are not always accurate; mathematically, the bottom line should be the same as the top line, in 'fp-math' the step '1 + 1/9000' leads to a rounding up as the first bit of the 14 bit tail '10111000110010' of the mantissa falling off the table when adding 1 is a '1', this up-rounding is not undone when subtracting the 1 again, since there is no ...
[2] [3] [4] For example: ”a” “ab” “b” The above indicates that the first variable “a” has a mean (or average) that is statistically different from the third one “b”. But, the second variable “ab” has a mean that is not statistically different from either the first or the third variable. Let's look at another example:
A volcano plot combines a measure of statistical significance from a statistical test (e.g., a p value from an ANOVA model) with the magnitude of the change, enabling quick visual identification of those data-points (genes, etc.) that display large magnitude changes that are also statistically significant.
For the null hypothesis to be rejected, an observed result has to be statistically significant, i.e. the observed p-value is less than the pre-specified significance level . To determine whether a result is statistically significant, a researcher calculates a p -value, which is the probability of observing an effect of the same magnitude or ...
However, the studentized range distribution used to determine the level of significance of the differences considered in Tukey's test has vastly broader application: It is useful for researchers who have searched their collected data for remarkable differences between groups, but then cannot validly determine how significant their discovered ...
In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.
A "statistically significant" difference between two proportions is understood to mean that, given the data, it is likely that there is a difference in the population proportions. However, this difference might be too small to be meaningful—the statistically significant result does not tell us the size of the difference.