When.com Web Search

  1. Ads

    related to: integral calculus example problems with solution

Search results

  1. Results From The WOW.Com Content Network
  2. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    A line integral (sometimes called a path integral) is an integral where the function to be integrated is evaluated along a curve. [42] Various different line integrals are in use. In the case of a closed curve it is also called a contour integral. The function to be integrated may be a scalar field or a vector field.

  3. Integral equation - Wikipedia

    en.wikipedia.org/wiki/Integral_equation

    For example, one method of solving a boundary value problem is by converting the differential equation with its boundary conditions into an integral equation and solving the integral equation. [1] In addition, because one can convert between the two, differential equations in physics such as Maxwell's equations often have an analog integral and ...

  4. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    This simplifies the theory and algorithms considerably. The problem of evaluating integrals is thus best studied in its own right. Conversely, the term "quadrature" may also be used for the solution of differential equations: "solving by quadrature" or "reduction to quadrature" means expressing its solution in terms of integrals.

  5. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to ...

  6. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus.

  7. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial: x 6 − 9 x 3 + 8 = 0. {\displaystyle x^{6}-9x^{3}+8=0.} Sixth-degree polynomial equations are generally impossible to solve in terms of radicals (see Abel–Ruffini theorem ).