Search results
Results From The WOW.Com Content Network
The pandas package in Python implements this operation as "melt" function which converts a wide table to a narrow one. The process of converting a narrow table to wide table is generally referred to as "pivoting" in the context of data transformations.
Pandas also supports the syntax data.iloc[n], which always takes an integer n and returns the nth value, counting from 0. This allows a user to act as though the index is an array-like sequence of integers, regardless of how it's actually defined. [9]: 110–113 Pandas supports hierarchical indices with multiple values per data point.
Edit-tricks are most useful when multiple tables must be changed, then the time needed to develop complex edit-patterns can be applied to each table. For each table, insert an alpha-prefix on each column (making each row-token "|-" to sort as column zero, like prefix "Row124col00"), then sort into a new file, and then de-prefix the column entries.
Data analysis is the process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making. [1]
A categorical variable that can take on exactly two values is termed a binary variable or a dichotomous variable; an important special case is the Bernoulli variable. Categorical variables with more than two possible values are called polytomous variables; categorical variables are often assumed to be polytomous unless otherwise specified.
MCA is performed by applying the CA algorithm to either an indicator matrix (also called complete disjunctive table – CDT) or a Burt table formed from these variables. [citation needed] An indicator matrix is an individuals × variables matrix, where the rows represent individuals and the columns are dummy variables representing categories of the variables. [1]
Correspondence analysis (CA) is a multivariate statistical technique proposed [1] by Herman Otto Hartley (Hirschfeld) [2] and later developed by Jean-Paul Benzécri. [3] It is conceptually similar to principal component analysis, but applies to categorical rather than continuous data.
The categorical variables are first put in order. Then, each variable is assigned to an axis. In the table to the right, sequence and classification is presented for this data set. Another ordering will result in a different mosaic plot, i.e., the order of the variables is significant as for all multivariate plots.