Search results
Results From The WOW.Com Content Network
Nitrogen fixation is a chemical process by which molecular dinitrogen (N 2) is converted into ammonia (NH 3). [1] It occurs both biologically and abiologically in chemical industries. Biological nitrogen fixation or diazotrophy is catalyzed by enzymes called nitrogenases. [2]
Nitrogenase is an enzyme responsible for catalyzing nitrogen fixation, which is the reduction of nitrogen (N 2) to ammonia (NH 3) and a process vital to sustaining life on Earth. [9] There are three types of nitrogenase found in various nitrogen-fixing bacteria: molybdenum (Mo) nitrogenase, vanadium (V) nitrogenase , and iron-only (Fe ...
Most biological nitrogen fixation occurs by the activity of molybdenum (Mo)-nitrogenase, found in a wide variety of bacteria and some Archaea. Mo-nitrogenase is a complex two-component enzyme that has multiple metal-containing prosthetic groups. [22] An example of free-living bacteria is Azotobacter.
Biological carbon fixation, or сarbon assimilation, is the process by which living organisms convert inorganic carbon (particularly carbon dioxide, CO 2) to organic compounds. These organic compounds are then used to store energy and as structures for other biomolecules .
Abiological nitrogen fixation describes chemical processes that fix (react with) N 2, usually with the goal of generating ammonia. The dominant technology for abiological nitrogen fixation is the Haber process, which uses iron-based heterogeneous catalysts and H 2 to convert N 2 to NH 3. This article focuses on homogeneous (soluble) catalysts ...
The nif genes are genes encoding enzymes involved in the fixation of atmospheric nitrogen into a form of nitrogen available to living organisms. The primary enzyme encoded by the nif genes is the nitrogenase complex which is in charge of converting atmospheric nitrogen (N 2) to other nitrogen forms such as ammonia which the organism can use for various purposes.
Nitrogen cycle. Nitrification is the biological oxidation of ammonia to nitrate via the intermediary nitrite. Nitrification is an important step in the nitrogen cycle in soil. The process of complete nitrification may occur through separate organisms [1] or entirely within one organism, as in comammox bacteria. The transformation of ammonia to ...
Heterocysts or heterocytes are specialized nitrogen-fixing cells formed during nitrogen starvation by some filamentous cyanobacteria, such as Nostoc, Cylindrospermum, and Anabaena. [1] They fix nitrogen from dinitrogen (N 2) in the air using the enzyme nitrogenase, in order to provide the cells in the filament with nitrogen for biosynthesis. [2]