Search results
Results From The WOW.Com Content Network
Snell's law (also known as the Snell–Descartes law, the ibn-Sahl law, [1] and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.
where θ 1 is the angle of reflection (or incidence) and θ 2 is the angle of refraction. Using Snell's law, = , one can calculate the incident angle θ 1 = θ B at which no light is reflected:
Since the phase velocity is lower in the second medium (v 2 < v 1), the angle of refraction θ 2 is less than the angle of incidence θ 1; that is, the ray in the higher-index medium is closer to the normal. When light moves from one medium to another, it changes direction, i.e. it is refracted.
This phenomenon, known as total internal reflection, occurs at incidence angles for which Snell's law predicts that the sine of the angle of refraction would exceed unity (whereas in fact sin θ ≤ 1 for all real θ). For glass with n = 1.5 surrounded by air, the critical angle is approximately 42°.
In computer graphics and geography, the angle of incidence is also known as the illumination angle of a surface with a light source, such as the Earth's surface and the Sun. [1] It can also be equivalently described as the angle between the tangent plane of the surface and another plane at right angles to the light rays. [ 2 ]
where n is the index of refraction of the medium in which the lens is working (1.00 for air, 1.33 for pure water, and typically 1.52 for immersion oil; [1] see also list of refractive indices), and θ is the half-angle of the maximum cone of light that can enter or exit the lens. In general, this is the angle of the real marginal ray in the
Young [6] [11] distinguished several regions where different methods for calculating astronomical refraction were applicable. In the upper portion of the sky, with a zenith distance of less than 70° (or an altitude over 20°), various simple refraction formulas based on the index of refraction (and hence on the temperature, pressure, and humidity) at the observer are adequate.
The index of refraction is calculated from the observed refraction angle using Snell's law. For mixtures, the index of refraction then allows the concentration to be determined using mixing rules such as the Gladstone–Dale relation and Lorentz–Lorenz equation.