Ad
related to: state space model pdf book
Search results
Results From The WOW.Com Content Network
The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector , the state vector . If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.
In quantum mechanics a state space is a separable complex Hilbert space.The dimension of this Hilbert space depends on the system we choose to describe. [1] [2] The different states that could come out of any particular measurement form an orthonormal basis, so any state vector in the state space can be written as a linear combination of these basis vectors.
Vacuum World, a shortest path problem with a finite state space. In computer science, a state space is a discrete space representing the set of all possible configurations of a "system". [1] It is a useful abstraction for reasoning about the behavior of a given system and is widely used in the fields of artificial intelligence and game theory.
State/Space theory constitutes a new branch of social and political geography in which the issues of space as a geographic element are considered for their influence on political relationships and outcomes. [1] Leading scholars include Neil Brenner at the Harvard Graduate School of Design, and Bob Jessop at Lancaster University in England ...
The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .
In functional analysis, a state of an operator system is a positive linear functional of norm 1. States in functional analysis generalize the notion of density matrices in quantum mechanics, which represent quantum states , both mixed states and pure states .
This state-space realization is called controllable canonical form (also known as phase variable canonical form) because the resulting model is guaranteed to be controllable (i.e., because the control enters a chain of integrators, it has the ability to move every state).
The state space of the dynamical system is a ν-dimensional manifold M. The dynamics is given by a smooth map:. Assume that the dynamics f has a strange attractor with box counting dimension d A. Using ideas from Whitney's embedding theorem, A can be embedded in k-dimensional Euclidean space with