When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Null hypothesis - Wikipedia

    en.wikipedia.org/wiki/Null_hypothesis

    The standard "no difference" null hypothesis may reward the pharmaceutical company for gathering inadequate data. "Difference" is a better null hypothesis in this case, but statistical significance is not an adequate criterion for reaching a nuanced conclusion which requires a good numeric estimate of the drug's effectiveness.

  3. Null distribution - Wikipedia

    en.wikipedia.org/wiki/Null_distribution

    Null distribution is a tool scientists often use when conducting experiments. The null distribution is the distribution of two sets of data under a null hypothesis. If the results of the two sets of data are not outside the parameters of the expected results, then the null hypothesis is said to be true. Null and alternative distribution

  4. Glossary of probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_probability...

    null hypothesis (H 0) The statement being tested in a test of statistical significance; usually a statement of 'no effect' or 'no difference'. [3] For example, in a test of whether light has an effect on sleep, the null hypothesis would be that light has no effect on sleep (i.e. sleep patterns are the same regardless of the lighting conditions).

  5. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    Statistical hypothesis testing is a key technique of both frequentist inference and Bayesian inference, although the two types of inference have notable differences. Statistical hypothesis tests define a procedure that controls (fixes) the probability of incorrectly deciding that a default position (null hypothesis) is incorrect. The procedure ...

  6. Template:List of statistics symbols - Wikipedia

    en.wikipedia.org/wiki/Template:List_of...

    In general, the subscript 0 indicates a value taken from the null hypothesis, H 0, which should be used as much as possible in constructing its test statistic. ... Definitions of other symbols: Definitions of other symbols:

  7. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    In statistical hypothesis testing, a type I error, or a false positive, is the rejection of the null hypothesis when it is actually true. A type II error, or a false negative, is the failure to reject a null hypothesis that is actually false. [1] Type I error: an innocent person may be convicted. Type II error: a guilty person may be not convicted.

  8. Hypothesis - Wikipedia

    en.wikipedia.org/wiki/Hypothesis

    In statistical hypothesis testing, two hypotheses are compared. These are called the null hypothesis and the alternative hypothesis. The null hypothesis is the hypothesis that states that there is no relation between the phenomena whose relation is under investigation, or at least not of the form given by the alternative hypothesis.

  9. Null result - Wikipedia

    en.wikipedia.org/wiki/Null_result

    In science, a null result is a result without the expected content: that is, the proposed result is absent. [1] It is an experimental outcome which does not show an otherwise expected effect. This does not imply a result of zero or nothing, simply a result that does not support the hypothesis .