Search results
Results From The WOW.Com Content Network
Mitochondrial uncoupling proteins (UCP) are members of the larger family of mitochondrial anion carrier proteins (MACP). UCPs separate, or uncouple, oxidative phosphorylation from ATP synthesis by dissipating the mitochondrial membrane potential as heat, also referred to as the mitochondrial proton leak. UCPs facilitate the transfer of anions ...
Mitochondrial uncoupling proteins (UCP) are members of the larger family of mitochondrial anion carrier proteins (MACP). UCPs separate oxidative phosphorylation from ATP synthesis with energy dissipated as heat, also referred to as the mitochondrial proton leak.
UCPs separate oxidative phosphorylation from ATP synthesis with energy dissipated as heat, also referred to as the mitochondrial proton leak. UCPs facilitate the transfer of anions from the inner to the outer mitochondrial membrane and the return transfer of protons from the outer to the inner mitochondrial membrane.
Structure of the human uncoupling protein UCP1. An uncoupling protein (UCP) is a mitochondrial inner membrane protein that is a regulated proton channel or transporter.An uncoupling protein is thus capable of dissipating the proton gradient generated by NADH-powered pumping of protons from the mitochondrial matrix to the mitochondrial intermembrane space.
This will lead to protons leaking through the inner mitochondrial membrane without complexes I, III, and IV pushing protons back through to maintain the proton gradient. There is also electron leak (an event where electrons leak out of the electron transport chain), which happens because NADH dehydrogenase within Complex I becomes damaged ...
This process is known as proton leak or mitochondrial uncoupling and is due to the facilitated diffusion of protons into the matrix. The process results in the unharnessed potential energy of the proton electrochemical gradient being released as heat. [ 21 ]
Thermogenin (called uncoupling protein by its discoverers and now known as uncoupling protein 1, or UCP1) [5] is a mitochondrial carrier protein found in brown adipose tissue (BAT). It is used to generate heat by non-shivering thermogenesis , and makes a quantitatively important contribution to countering heat loss in babies which would ...
Complex III and IV are proton pumps, pumping H+ protons out of the mitochondrial matrix, and work in conjunction with complex I to create the proton gradient found at the inner membrane. Cytochrome c is and electron carrier protein that travels between complex III and IV, and triggers apoptosis if it leaves the cristae. Complex IV passes ...