Search results
Results From The WOW.Com Content Network
In mathematics and statistics, a quantitative variable may be continuous or discrete if it is typically obtained by measuring or counting, respectively. [1] If it can take on two particular real values such that it can also take on all real values between them (including values that are arbitrarily or infinitesimally close together), the variable is continuous in that interval. [2]
Benford's law, which describes the frequency of the first digit of many naturally occurring data. The ideal and robust soliton distributions. Zipf's law or the Zipf distribution. A discrete power-law distribution, the most famous example of which is the description of the frequency of words in the English language.
A discrete probability distribution is the probability distribution of a random variable that can take on only a countable number of values [15] (almost surely) [16] which means that the probability of any event can be expressed as a (finite or countably infinite) sum: = (=), where is a countable set with () =.
In statistics, the mode is the value that appears most often in a set of data values. [1] If X is a discrete random variable, the mode is the value x at which the probability mass function takes its maximum value (i.e., x=argmax x i P(X = x i)). In other words, it is the value that is most likely to be sampled.
In probability theory and statistics, the discrete uniform distribution is a symmetric probability distribution wherein each of some finite whole number n of outcome values are equally likely to be observed. Thus every one of the n outcome values has equal probability 1/n. Intuitively, a discrete uniform distribution is "a known, finite number ...
In probability theory and statistics, a categorical distribution (also called a generalized Bernoulli distribution, multinoulli distribution [1]) is a discrete probability distribution that describes the possible results of a random variable that can take on one of K possible categories, with the probability of each category separately specified.
This substantially unifies the treatment of discrete and continuous probability distributions. The above expression allows for determining statistical characteristics of such a discrete variable (such as the mean, variance, and kurtosis), starting from the formulas given for a continuous distribution of the probability.
For n independent and identically distributed discrete random variables X 1, X 2, ..., X n with cumulative distribution function G(x) and probability mass function g(x) the range of the X i is the range of a sample of size n from a population with distribution function G(x).