When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Water–gas shift reaction - Wikipedia

    en.wikipedia.org/wiki/Watergas_shift_reaction

    This is sometimes called the reverse watergas shift reaction. [20] Water gas is defined as a fuel gas consisting mainly of carbon monoxide (CO) and hydrogen (H 2). The term 'shift' in watergas shift means changing the water gas composition (CO:H 2) ratio. The ratio can be increased by adding CO 2 or reduced by adding steam to the reactor.

  3. Bosch reaction - Wikipedia

    en.wikipedia.org/wiki/Bosch_reaction

    The first reaction, the reverse water gas shift reaction, is a fast one: CO 2 + H 2 → CO + H 2 O. The second reaction is the rate determining step: CO + H 2 → C + H 2 O. The overall reaction produces 2.3×10 3 joules for every gram of carbon dioxide reacted at 650 °C. Reaction temperatures are in the range of 450 to 600 °C.

  4. Sorption enhanced water gas shift - Wikipedia

    en.wikipedia.org/wiki/Sorption_enhanced_water...

    The water gas shift reaction is the reaction between carbon monoxide and steam to form hydrogen and carbon dioxide: CO + H 2 O ⇌ CO 2 + H 2. This reaction was discovered by Felice Fontana and nowadays is adopted in a wide range of industrial applications, such as in the production process of ammonia, hydrocarbons, methanol, hydrogen and other chemicals.

  5. Fischer–Tropsch process - Wikipedia

    en.wikipedia.org/wiki/Fischer–Tropsch_process

    Natural gas has a high hydrogen to carbon ratio, so the water-gas shift is not needed for cobalt catalysts. Cobalt-based catalysts are more sensitive than their iron counterparts. Illustrative of real world catalyst selection, high-temperature Fischer–Tropsch (HTFT), which operates at 330–350 °C, uses an iron-based catalyst.

  6. Industrial catalysts - Wikipedia

    en.wikipedia.org/wiki/Industrial_catalysts

    The reaction is exothermic with ΔH= -41.1 kJ/mol and have an adiabatic temperature rise of 8–10 °C per percent CO converted to CO 2 and H 2. The most common catalysts used in the water-gas shift reaction are the high temperature shift (HTS) catalyst and the low temperature shift (LTS) catalyst.

  7. Chemical looping reforming and gasification - Wikipedia

    en.wikipedia.org/wiki/Chemical_looping_reforming...

    Steam can be added to the reaction in order to increase the generation of H 2, via the water-gas shift reaction (WGS) and/or steam methane reforming. The CLR process can produce a syngas with a H 2:CO molar ratio of 2:1 or higher, which is suitable for Fischer–Tropsch synthesis, methanol synthesis, or hydrogen production. The reduced oxygen ...

  8. Sabatier reaction - Wikipedia

    en.wikipedia.org/wiki/Sabatier_reaction

    However, one pass through the Sabatier reactor produces a ratio of only 1:1. More oxygen may be produced by running the water-gas shift reaction (WGSR) in reverse (RWGS), effectively extracting oxygen from the atmosphere by reducing carbon dioxide to carbon monoxide.

  9. Integrated gasification combined cycle - Wikipedia

    en.wikipedia.org/wiki/Integrated_gasification...

    Water-gas-shift reaction. The reaction that occurs in a water-gas-shift reactor is CO + H 2 O CO 2 + H 2. This produces a syngas with a higher composition of hydrogen fuel which is more efficient for burning later in combustion. Physical separation process.