Search results
Results From The WOW.Com Content Network
Harmonic oscillators occurring in a number of areas of engineering are equivalent in the sense that their mathematical models are identical (see universal oscillator equation above). Below is a table showing analogous quantities in four harmonic oscillator systems in mechanics and electronics.
On strings, bowed harmonics have a "glassy", pure tone. On stringed instruments, harmonics are played by touching (but not fully pressing down the string) at an exact point on the string while sounding the string (plucking, bowing, etc.); this allows the harmonic to sound, a pitch which is always higher than the fundamental frequency of the string.
This movement produces displacement antinodes in the standing wave. Nodes tend to form inside the cylinder, away from the ends. In the first harmonic, the open tube contains exactly half of a standing wave (antinode-node-antinode). Thus the harmonics of the open cylinder are calculated in the same way as the harmonics of a closed/closed cylinder.
In power systems, harmonics are defined as positive integer multiples of the fundamental frequency. Thus, the third harmonic is the third multiple of the fundamental frequency. Harmonics in power systems are generated by non-linear loads. Semiconductor devices like transistors, IGBTs, MOSFETs, diodes, etc. are all non-linear loads. Further ...
To understand a system with an input and an output, such as an audio amplifier, we start with an ideal system where the transfer function is linear and time-invariant. When a sinusoidal signal of frequency ω passes through a non-ideal, non-linear device, additional content is added at multiples nω (harmonics) of the original frequency. THD is ...
The same nonlinear system will produce both total harmonic distortion (with a solitary sine wave input) and IMD (with more complex tones). In music, for instance, IMD is intentionally applied to electric guitars using overdriven amplifiers or effects pedals to produce new tones at sub harmonics of the tones being played on the instrument.
A harmonic is any member of the harmonic series, an ideal set of frequencies that are positive integer multiples of a common fundamental frequency. The fundamental is a harmonic because it is one times itself. A harmonic partial is any real partial component of a complex tone that matches (or nearly matches) an ideal harmonic. [3]
A harmonic spectrum is a spectrum containing only frequency components whose frequencies are whole number multiples of the fundamental frequency; such frequencies are known as harmonics. "The individual partials are not heard separately but are blended together by the ear into a single tone."