Search results
Results From The WOW.Com Content Network
The total magnetic dipole moment resulting from both spin and orbital angular momenta of an electron is related to the total angular momentum J by a similar equation: = . The g -factor g J is known as the Landé g -factor , which can be related to g L and g S by quantum mechanics.
The spin angular momentum of an electron is 1 / 2 ħ, but the intrinsic electron magnetic moment caused by its spin is also approximately one Bohr magneton, which results in the electron spin g-factor, a factor relating spin angular momentum to corresponding magnetic moment of a particle, having a value of approximately 2. [15]
For example, any electron's magnetic moment is measured to be −9.284 764 × 10 −24 J/T. [17] The direction of the magnetic moment of any elementary particle is entirely determined by the direction of its spin, with the negative value indicating that any electron's magnetic moment is antiparallel to its spin.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
The "Dirac" magnetic moment, corresponding to tree-level Feynman diagrams (which can be thought of as the classical result), can be calculated from the Dirac equation. It is usually expressed in terms of the g-factor; the Dirac equation predicts =. For particles such as the electron, this classical result differs from the observed value by a ...
When an isolated atom is placed in a magnetic field there is an interaction because each electron in the atom behaves like a magnet, that is, the electron has a magnetic moment. There are two types of interaction. Diamagnetism. When placed in a magnetic field the atom becomes magnetically polarized, that is, it develops an induced magnetic moment.
The measurement of neutrino magnetic moments is an active area of research. Experimental results have put the neutrino magnetic moment at less than 1.2 × 10 −10 times the electron's magnetic moment. On the other hand, elementary particles with spin but without electric charge, such as the photon and Z boson, do not have a magnetic moment.
The magnetic quantum number determines the energy shift of an atomic orbital due to an external magnetic field (the Zeeman effect) — hence the name magnetic quantum number. However, the actual magnetic dipole moment of an electron in an atomic orbital arises not only from the electron angular momentum but also from the electron spin ...