Search results
Results From The WOW.Com Content Network
Kepler's final step was to recognize that these polyhedra fit the definition of regularity, even though they were not convex, as the traditional Platonic solids were. In 1809, Louis Poinsot rediscovered Kepler's figures, by assembling star pentagons around each vertex. He also assembled convex polygons around star vertices to discover two more ...
It includes templates of face elements for construction and helpful hints in building, and also brief descriptions on the theory behind these shapes. It contains the 75 nonprismatic uniform polyhedra , as well as 44 stellated forms of the convex regular and quasiregular polyhedra.
Platonic solids (5, convex, regular) Archimedean solids (13, convex, uniform) Kepler–Poinsot polyhedra (4, regular, non-convex) Uniform polyhedra (75, uniform) Prismatoid: prisms, antiprisms etc. (4 infinite uniform classes) Polyhedra tilings (11 regular, in the plane) Quasi-regular polyhedra Johnson solids (92, convex, non-uniform) Bipyramids
Print/export Download as PDF; Printable version; In other projects Wikidata item; Appearance. move to sidebar hide ... 5 Platonic solids: 4 Kepler–Poinsot solids: 3 ...
1.4 Kepler-Poinsot solids. 1.5 Achiral nonconvex uniform polyhedra. 2 Chiral Archimedean and Catalan solids. ... Printable version; In other projects Wikidata item;
Kepler (1619) discovered two of the regular Kepler–Poinsot polyhedra, the small stellated dodecahedron and great stellated dodecahedron. Louis Poinsot (1809) discovered the other two, the great dodecahedron and great icosahedron. The set of four was proven complete by Augustin-Louis Cauchy in 1813 and named by Arthur Cayley in 1859.
Print/export Download as PDF; Printable version; ... Pages in category "Kepler–Poinsot polyhedra" The following 5 pages are in this category, out of 5 total.
The regular star polyhedra are called the Kepler–Poinsot polyhedra and there are four of them, based on the vertex arrangements of the dodecahedron {5,3} and icosahedron {3,5}: As spherical tilings, these star forms overlap the sphere multiple times, called its density, being 3 or 7 for these forms.