When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The function e (−1/x 2) is not analytic at x = 0: the Taylor series is identically 0, although the function is not. If f ( x ) is given by a convergent power series in an open disk centred at b in the complex plane (or an interval in the real line), it is said to be analytic in this region.

  3. Euler–Maclaurin formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Maclaurin_formula

    In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum.It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus.

  4. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  5. Binomial series - Wikipedia

    en.wikipedia.org/wiki/Binomial_series

    The case α = 1 gives the series 1 + x + x 2 + x 3 + ..., where the coefficient of each term of the series is simply 1. The case α = 2 gives the series 1 + 2x + 3x 2 + 4x 3 + ..., which has the counting numbers as coefficients. The case α = 3 gives the series 1 + 3x + 6x 2 + 10x 3 + ..., which has the triangle numbers as coefficients.

  6. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    However, Abel's theorem states that if the series is convergent for some value z such that | z – c | = r, then the sum of the series for x = z is the limit of the sum of the series for x = c + t (z – c) where t is a real variable less than 1 that tends to 1.

  7. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    The Maclaurin series of the logarithm function ⁡ (+) is conditionally convergent for x = 1. The Riemann series theorem states that if a series converges conditionally, it is possible to rearrange the terms of the series in such a way that the series converges to any value, or even diverges.

  8. Arctangent series - Wikipedia

    en.wikipedia.org/wiki/Arctangent_series

    The derivative of arctan x is 1 / (1 + x 2); conversely, the integral of 1 / (1 + x 2) ... One can find the Maclaurin series for by naïvely integrating ...

  9. Integral test for convergence - Wikipedia

    en.wikipedia.org/wiki/Integral_test_for_convergence

    for the infinite series. Note that if the function () is increasing, then the function () is decreasing and the above theorem applies.. Many textbooks require the function to be positive, [1] [2] [3] but this condition is not really necessary, since when is negative and decreasing both = and () diverge.