When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    The eccentricity of Earth's orbit is currently about 0.016 7; its orbit is nearly circular. Neptune's and Venus's have even lower eccentricities of 0.008 6 and 0.006 8 respectively, the latter being the least orbital eccentricity of any planet in the Solar

  3. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    Planet orbiting the Sun in a circular orbit (e=0.0) Planet orbiting the Sun in an orbit with e=0.5 Planet orbiting the Sun in an orbit with e=0.2 Planet orbiting the Sun in an orbit with e=0.8 The red ray rotates at a constant angular velocity and with the same orbital time period as the planet, =.

  4. Orbit - Wikipedia

    en.wikipedia.org/wiki/Orbit

    An animation showing a low eccentricity orbit (near-circle, in red), and a high eccentricity orbit (ellipse, in purple). In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object [1] such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such ...

  5. Minor planet - Wikipedia

    en.wikipedia.org/wiki/Minor_planet

    Further subclassification of these, based on orbital distance, is used: [13] Apohele asteroids orbit inside of Earth's perihelion distance and thus are contained entirely within the orbit of Earth. Aten asteroids, those that have a semimajor axis of less than Earth's and an aphelion (furthest distance from the Sun) greater than 0.983 AU.

  6. Eccentric Jupiter - Wikipedia

    en.wikipedia.org/wiki/Eccentric_Jupiter

    For example, the eccentric planet HD 80606 b has an extremely elliptical orbit with a periapsis distance of 0.03 au and apoapsis distance of 0.87 au, and may be a celestial body that is transitioning to a hot Jupiter with an orbital radius of 0.03 au.

  7. Exoplanet orbital and physical parameters - Wikipedia

    en.wikipedia.org/wiki/Exoplanet_orbital_and...

    With the exoplanet sample known in 2009, a group of astronomers estimated that "(1) around 35% of the published eccentric one-planet solutions are statistically indistinguishable from planetary systems in 2:1 orbital resonance, (2) another 40% cannot be statistically distinguished from a circular orbital solution" and "(3) planets with masses ...

  8. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    The period of the resultant orbit will be less than that of the original circular orbit. Thrust applied in the direction of the satellite's motion creates an elliptical orbit with its highest point 180 degrees away from the firing point. The period of the resultant orbit will be longer than that of the original circular orbit.

  9. 420356 Praamzius - Wikipedia

    en.wikipedia.org/wiki/420356_Praamzius

    With an eccentricity of 0.003 in 2016, [b] Praamzius had one of the lowest eccentricities of any trans-Neptunian object, and a more circular orbit than any major planet (including Venus, the least eccentric planet at 0.007). But the object's eccentricity varies over time due to the position of the planets (also see table). A 10 million year ...