When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Van 't Hoff factor - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_factor

    The van 't Hoff factor is the ratio between the actual concentration of particles produced when the substance is dissolved and the concentration of a substance as calculated from its mass. For most non- electrolytes dissolved in water, the van 't Hoff factor is essentially 1.

  3. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".

  4. Ebullioscopic constant - Wikipedia

    en.wikipedia.org/wiki/Ebullioscopic_constant

    i is the van 't Hoff factor, the number of particles the solute splits into or forms when dissolved. b is the molality of the solution. A formula to compute the ebullioscopic constant is: [2] = R is the ideal gas constant. M is the molar mass of the solvent.

  5. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...

  6. Colligative properties - Wikipedia

    en.wikipedia.org/wiki/Colligative_properties

    Here K f is the cryoscopic constant (equal to 1.86 °C kg/mol for the freezing point of water), i is the van 't Hoff factor, and m the molality (in mol/kg). This predicts the melting of ice by road salt. In the liquid solution, the solvent is diluted by the addition of a solute, so that fewer molecules are available to freeze.

  7. Boiling-point elevation - Wikipedia

    en.wikipedia.org/wiki/Boiling-point_elevation

    Equation after including the van 't Hoff factor ΔT b = K b · b solute · i. The above formula reduces precision at high concentrations, due to nonideality of the solution. If the solute is volatile, one of the key assumptions used in deriving the formula is not true because the equation derived is for solutions of non-volatile solutes in a ...

  8. Cryoscopic constant - Wikipedia

    en.wikipedia.org/wiki/Cryoscopic_constant

    i is the van ‘t Hoff factor, the number of particles the solute splits into or forms when dissolved; b is the molality of the solution. Through cryoscopy, a known constant can be used to calculate an unknown molar mass. The term "cryoscopy" means "freezing measurement" in Greek.

  9. Osmotic pressure - Wikipedia

    en.wikipedia.org/wiki/Osmotic_pressure

    Jacobus van 't Hoff found a quantitative relationship between osmotic pressure and solute concentration, expressed in the following equation: Π = i c R T {\displaystyle \Pi =icRT} where Π {\displaystyle \Pi } is osmotic pressure, i is the dimensionless van 't Hoff index , c is the molar concentration of solute, R is the ideal gas constant ...