Search results
Results From The WOW.Com Content Network
The alveolar gas equation is the method for calculating partial pressure of alveolar oxygen (p A O 2). The equation is used in assessing if the lungs are properly transferring oxygen into the blood. The alveolar air equation is not widely used in clinical medicine, probably because of the complicated appearance of its classic forms.
The alveolar oxygen partial pressure is lower than the atmospheric O 2 partial pressure for two reasons. Firstly, as the air enters the lungs, it is humidified by the upper airway and thus the partial pressure of water vapour (47 mmHg) reduces the oxygen partial pressure to about 150 mmHg.
Alveolar pressure (PA) at end expiration is equal to atmospheric pressure (0 cm H 2 O differential pressure, at zero flow), plus or minus 2 cm H 2 O (1.5 mmHg) throughout the lung. On the other hand, gravity causes a gradient in blood pressure between the top and bottom of the lung of 20 mmHg in the erect position (roughly half of that in the ...
The Alveolar–arterial gradient (A-aO 2, [1] or A–a gradient), is a measure of the difference between the alveolar concentration (A) of oxygen and the arterial (a) concentration of oxygen. It is a useful parameter for narrowing the differential diagnosis of hypoxemia. [2] The A–a gradient helps to assess the integrity of the alveolar ...
The alveolar pressure is estimated by measuring the pressure in the airways while holding one's breath. [2] The intrapleural pressure is estimated by measuring the pressure inside a balloon placed in the esophagus. [2] Measurement of transpulmonary pressure assists in spirometry in availing for calculation of static lung compliance.
Image illustrating transpulmonary, intrapleural and intra-alveolar pressure. Alveolar pressure (P alv) is the pressure of air inside the lung alveoli.When the glottis is opened and no air is flowing into or out of the lungs, alveolar pressure is equal to the atmospheric pressure, that is, zero cmH 2 O.
Arterial blood oxygen tension (normal) P a O 2 – Partial pressure of oxygen at sea level (160 mmHg (21.3 kPa) in the atmosphere, 21% of the standard atmospheric pressure of 760 mmHg (101 kPa)) in arterial blood is between 75 and 100 mmHg (10.0 and 13.3 kPa).
While the maintenance of ventilation/perfusion ratio during regional obstruction of airflow is beneficial, HPV can be detrimental during global alveolar hypoxia which occurs with exposure to high altitude, where HPV causes a significant increase in total pulmonary vascular resistance, and pulmonary arterial pressure, potentially leading to ...