Search results
Results From The WOW.Com Content Network
A primality test is an algorithm for determining whether an input number is prime.Among other fields of mathematics, it is used for cryptography.Unlike integer factorization, primality tests do not generally give prime factors, only stating whether the input number is prime or not.
Fermat's little theorem states that if p is prime and a is not divisible by p, then a p − 1 ≡ 1 ( mod p ) . {\displaystyle a^{p-1}\equiv 1{\pmod {p}}.} If one wants to test whether p is prime, then we can pick random integers a not divisible by p and see whether the congruence holds.
This occurs for example when n is a probable prime to base a but not a strong probable prime to base a. [20]: 1402 If x is a nontrivial square root of 1 modulo n, since x 2 ≡ 1 (mod n), we know that n divides x 2 − 1 = (x − 1)(x + 1); since x ≢ ±1 (mod n), we know that n does not divide x − 1 nor x + 1.
The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". [1]
If a and p are coprime numbers such that a p−1 − 1 is divisible by p, then p need not be prime. If it is not, then p is called a (Fermat) pseudoprime to base a. The first pseudoprime to base 2 was found in 1820 by Pierre Frédéric Sarrus: 341 = 11 × 31. [12] [13] A number p that is a Fermat pseudoprime to base a for every number a coprime ...
For a fixed base a, it is unusual for a composite number to be a probable prime (that is, a pseudoprime) to that base. For example, up to 25 × 10 9, there are 11,408,012,595 odd composite numbers, but only 21,853 pseudoprimes base 2. [1]: 1005 The number of odd primes in the same interval is 1,091,987,404.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Another example is the distribution of the last digit of prime numbers. Except for 2 and 5, all prime numbers end in 1, 3, 7, or 9. Dirichlet's theorem states that asymptotically, 25% of all primes end in each of these four digits.