Search results
Results From The WOW.Com Content Network
In computer science, an array is a data structure consisting of a collection of elements (values or variables), of same memory size, each identified by at least one array index or key. An array is stored such that the position of each element can be computed from its index tuple by a mathematical formula.
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
In computer science, array is a data type that represents a collection of elements (values or variables), each selected by one or more indices (identifying keys) that can be computed at run time during program execution. Such a collection is usually called an array variable or array value. [1]
The ordered sequential types are lists (dynamic arrays), tuples, and strings. All sequences are indexed positionally (0 through length - 1) and all but strings can contain any type of object, including multiple types in the same sequence. Both strings and tuples are immutable, making them perfect candidates for dictionary keys (see below).
In array languages, operations are generalized to apply to both scalars and arrays. Thus, a+b expresses the sum of two scalars if a and b are scalars, or the sum of two arrays if they are arrays. An array language simplifies programming but possibly at a cost known as the abstraction penalty.
Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.
If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array. If the array contains all non-positive numbers, then a solution is any subarray of size 1 containing the maximal value of the array (or the empty subarray, if it is permitted). Several different sub-arrays may have the same ...
Both character termination and length codes limit strings: For example, C character arrays that contain null (NUL) characters cannot be handled directly by C string library functions: Strings using a length code are limited to the maximum value of the length code. Both of these limitations can be overcome by clever programming.